$1234567$ 個の実数 $a_1,a_2,\ldots, a_{1234567}$ が、$n=1,2,\ldots,1234567$ に対して
$$a_{n+1}a_{n}a_{n-1}=a_{n+1}+a_{n}^2+a_{n-1}$$
を満たしている。ただし $a_0=a_{1234567},\ a_{1234568}=a_1$ とする。このような実数列 $a_1,a_2,\ldots, a_{1234567}$ には最大で何種類の異なる実数が現れるか。
半角数字のみで1行目に入力せよ。
以下の解答欄を埋めよ。
正の実数に対して定義され、実数値をとる連続関数 $f(x)$ が、任意の正の実数 $x$ に対して $$f(x^2)=f(x)+\frac{\log_2{x}}{x+1}$$
を満たしている。このとき、
$$
f(16)-f(8)=\frac{\fbox{アイ}}{\fbox{ウエオ}}
$$
である。なお、このような $f$ は確かに存在し、上記の値は一意に定まることが証明できる。
解答欄ア〜オには、それぞれ0から9までの数字が入る。
文字列「アイウエオ」を半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えること。
以下の問いに答えよ。
(1)$a,b,c,d$ はいずれも $0$ でない実数の定数で、 $ad-bc\neq 0$ を満たしている。実数 $\displaystyle x\neq -\frac{d}{c} $ に対して関数 $f(x)$ を
$$
\displaystyle f(x)=\frac{ax+b}{cx+d}
$$
と定義すると、
$$
\frac{3\left(f''(x)\right)^2-2f'(x)f'''(x)}{\left(f'(x)\right)^2}
$$
の値は $a,b,c,d$ や $x$ によらないある整数となる。その値を求めよ。
(2)実数 $x$ に対して関数 $g(x)$ を
$$
\displaystyle g(x)=\frac{e^{4x+816}-e^{-4x-816}} {e^{4x+817}+e^{-4x-817}} \ \ \
$$
と定義すると、
$$
\displaystyle \frac{3\left(g''(x)\right)^2-2g'(x)g'''(x)}{\left(g'(x)\right)^2}
$$
の値は $x$ によらないある整数となる。その値を求めよ。
0から9までの半角数字および-(マイナス)のうち、必要なものを用いて解答せよ。
(1)の答えを1行目に入力せよ。
(2)の答えを2行目に入力せよ。
たとえば、(1)に $816$、(2)に $-817$ と回答したいときは、
816
-817
と入力せよ。
平面上に、点 $A(0,0)$、点 $B(10,0)$、点 $C(4,8)$ がある。
点 $P(x,y)$ は次の条件を満たすものとし、解の一意性のため $y>5$ とする:
点 $P$ の座標を求めなさい。
(解答は「x, y」の順に小数第2位まで。例:1.23, 4.56)
問題文を入力してください
例)ひらがなで入力してください。
平面上に、点 $A(0,0)$、点 $B(8,0)$、点 $C(2,6)$ がある。
点 $P(x,y)$ は次の条件を満たすものとし、解の一意性のため $y>0$ とする:
点 $P$ の座標を求めなさい。
(解答は「x, y」の順に小数第2位まで。例:1.23, 4.56)
文
問題文を入力してください
例)ひらがなで入力してください。
タイトル:二条件で定まる点と魂比率
平面上に、点 $A(0,0)$、点 $B(6,0)$、点 $C(0,8)$ がある。
点 $P(x,y)$ は次の2条件を満たすものとし、ただし一意性のため $y>4$ とする:
点 $P$ の座標を求めなさい。
(解答は「x, y」の順に小数第2位まで。例:1.23, 4.56)
以下の問いに答えよ.(自然数$n$について,$n!$ は,$1$ から $n$ までの自然数をすべてかけた値を表す.ただし$0!=1$とする.)
$r^m=\frac{r^m-r^{m+1}}{1-r}$ という式変形を用いて,$s<t$ を満たす自然数組 $(s,t)$ と, $r<1$ を満たす実数 $r$ について,$$r^s+r^{s+1}+\cdots+r^t=\frac{r^s-r^{t+1}}{1-r}$$ となることを示せ.
自然数組 $(a,i)$ について $a^i < i!$ が成立するなら,$i$ 以上の任意の自然数 $j$ で $$a^j < j!$$ となることを示せ.
自然数組 $(a,i,k,n)$ について,$f(k)=k!-a^k$ ,$g(k)=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots +\frac{1}{k!}$ とする.
$i<n$ ,$f(i)> 0$ を満たすとき,$$g(n)< g(i-1)+\frac{1}{a^i-a^{i-1}}-\frac{1}{a-1}\left( \frac{1}{a} \right)^n$$となることを示せ.
$n>4$ を満たす自然数 $n$ について,$$g(n)<\frac{67}{24}$$ となることを示せ.
私に伝わる程度でよいので、軽めに記述してください。