数学の問題一覧

カテゴリ
以上
以下

tb_lb

公開日時: 2025年1月9日21:24 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数問題 西暦問題 2025年問題

${}$ 西暦2025年問題第7弾です。1月7日にお送りするはずでしたが、問題に不備が見つかり、9日の出題となってしまいました。
 さて、当シリーズのラスト問題は循環小数がテーマです。いくぶん面倒な解法を想定しています。電卓も併用しながらで構いません。じっくりお楽しみください。

解答形式

${}$ 解答は求める分数の分子のみを入力してください。
(例)$\dfrac{107}{2025}$ → $\color{blue}{107}$

tb_lb

公開日時: 2025年1月6日22:00 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数問題 西暦問題 2025年問題

${}$ 西暦2025年問題第6弾です。一見本格的な整数問題ですが、あいかわらず仕掛けを施しています。独特な時味の当問をどうぞお楽しみください。

解答形式

${}$ 解答は求める項の値をそのまま入力してください。
(例)第10項=106 → $\color{blue}{106}$

tb_lb

公開日時: 2025年1月5日20:19 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数問題 西暦問題 2025年問題

${}$ 西暦2025年問題第5弾です。今回は覆面算風味の整数問題です。けれども、独特な解き心地があります。単一解であるのを前提にして構いませんので、じっくりと味わってください。

解答形式

${}$ 解答は指定の積をそのまま入力してください。
(例)105 → $\color{blue}{105}$

tb_lb

公開日時: 2025年1月4日20:43 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

西暦問題 規則性 2025年問題

${}$ 西暦2025年問題第4弾です。やや大きめのサイズの規則性の問題をお送りします。根拠まで詰めてほしいところですが、根性の規則性解法でも十分です。どうぞ戯れてやってください。

解答形式

${}$ 解答は指定の組数を単位なしでそのまま入力してください。
(例)104組 → $\color{blue}{104}$

Forest-of-Akumon

公開日時: 2024年12月30日23:25 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

#因数分解

98x^2+190x-312を因数分解せよ。

ammonitenh3

公開日時: 2024年10月30日23:15 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形ABCとその辺AB上にある点Dと辺CA上にある点Eが次の二つの条件を満たしている.(ただし、点D,Eは点Aとは一致しない)
 (Ⅰ)AB=13,BC=14,CA=15
 (Ⅱ)4点B,C,E,Dは共円
 このとき、「点Aを通りDEに垂直な直線」と、線分BCの交点をFとする.
 BFの長さを求めよ.

解答形式

例)この答えは、互いに素な自然数$a$,$b$を用いて$\frac{a}{b}$と書けるので、$a$+$b$の値を答えてください.

34tar0

公開日時: 2024年9月11日17:03 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

数学 中学数学 証明

問題文

$6$ 点 $A,B,C,D,E,F$ がこの順に同一円周上にあり、$AB=BC,CD=DE,EF=FA$ を満たす。このとき、$3$ 直線 $AD,BE,CF$ は一点で交わることを証明せよ。

解答形式

証明文を書く!

kiwiazarashi

公開日時: 2024年9月8日21:31 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

幾何

問題文

緑色の正方形ABCDと、紫色の正方形EFGHがあり、それぞれ1辺6cmである。点Aと点E、点Bと点F、点Cと点G、点Dと点Hがそれぞれ重なるように正方形を重ねる。(緑色の正方形が上にある。) そして辺ABを3等分する点をとり、点Aに近い方を点Iとする。また辺EFを3等分する点をとり、点Fに近い方を点Jとする。
今、緑色の正方形のみを重心を中心として回転させ、点Iと点Jが重なったところで回転を止めた。このとき、上から見える紫色の部分の面積の合計はいくらか。

解答形式

答えは◯cm^2となるので、◯の部分のみを答えてください。

余談

2年前(小6)のときにルービックキューブを触りながら作った問題です。問題文が長ったらしくて読みにくいと思いますがご了承ください。ちなみにこの問題は当時scratchにも投稿しました。

gurotan

公開日時: 2024年8月31日23:02 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

次の問題の空欄に当てはまる数字を答えてください

解答形式

1行目に一つ目の空欄を補う数字、
2行目に二つ目の空欄を補う数字を書いてください

gurotan

公開日時: 2024年8月31日22:56 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

三平方の定理 相似

問題文

次の画像の空欄に当てはまる数字を答えてください。
https://drive.google.com/file/d/1it_TfAjOic8pwV5ZPUd3P9ZRirM-7Evm/view?usp=drivesdk

解答形式

1個目の□に当てはまる数字を1行目、2個目の□は2行目に書いてください

gurotan

公開日時: 2024年8月30日0:09 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題

解答形式

例)(1)はb√c/aとなるので、a,b,cの値をそれぞれ1,2,3行目に書いてください
⑵はdπ/eとなるので、d,eの値を4,5行目に書いてください

Yuu_0909

公開日時: 2024年8月27日0:29 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

高校入試 幾何学 幾何 初等幾何 三角形

問題文

△ABC とその外接円 O があり、OA = 3、AB = 4 である。半直線 AO と線分 BC が交わるように点 C をとり、その交点を D とする。BD : DC = 2 : 1 となるときの OD の長さを全て求めなさい。ただし、点 C は弧 AB 上にないものとする。

解答形式

答えはある整数 $a, b, c$ を用いて$$\rm{OD} = \frac{b \pm \sqrt{c}}{a}$$と表せるので、一行目に $a$、二行目に $b$、三行目に $c$ を半角で入力してください。