公開日時: 2021年1月30日22:01 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
長方形・正方形・円が図のように配置されています。赤で示した線分の長さが7、長方形の面積が12のとき、青い線分の長さとしてあり得るものを全て求めてください。
解答は$\sqrt{\fbox {アイ}},\frac{\sqrt{\fbox{ウエオ}}}{\fbox カ}$となります。文字列「アイウエオカ」を解答してください。ただし、根号の中身が平方数の倍数とならないように解答してください。
公開日時: 2021年1月9日22:13 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
緑色の五角形の面積を求めてください。
紫でしめした3つの角は等しく、赤同士、青同士の線分はそれぞれ等しい長さです。
半角数字で解答してください。
公開日時: 2020年12月19日19:56 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
長方形$ABCD$を底面とする四角錐$P-ABCD$があります。$PA=1,PB=4,PC=8$のとき、$PD$の長さを求めてください。
半角数字で解答してください。
公開日時: 2020年12月5日18:00 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$n$ を正の整数とする。$f(n)=\sqrt{n^4+2n+61\ }$ が整数となるような $n$ を $1$ つ選び、そのときの $f(n)$ の値を答えよ。
なお、$f(n)$ が整数とならない場合や、答えた $f(n)$ の値が正しくない場合は不正解とする。
正解した場合は、まず解説を見よ。また、他のユーザーの回答も見てみよ。
あなたが選んだ $n$ における $f(n)$ の値を半角数字で1行目に入力せよ。
公開日時: 2020年11月28日19:32 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
図のように長方形や直角三角形の内接円が配置されています。青で示した角の角度を求めてください。
度数法で求め、半角数字で0以上360未満の整数を解答してください。
※度や°などの単位は付けないでください。
公開日時: 2020年11月21日19:25 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
図のように正方形・半円が配置されています。正方形の一辺の長さが2であるとき、青で示した部分の面積(の合計)を求めてください。
半角数字で解答してください。
公開日時: 2020年11月14日21:13 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
図のように黒・赤・青の正方形と、その外接円が配置されています。黒い正方形の一辺の長さが2であるとき、緑で示した線分の長さを求めてください。
半角数字で解答してください。
公開日時: 2020年11月8日17:36 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
※2020.11.10 18:49 問題タイトルを修正しました。
(解答に影響はありません)
図中の線分ABの長さを求めてください。
緑で示した2つの三角形の面積の差は11,赤と青で示した線分の長さの差は1です。
半角数字で解答してください。
公開日時: 2020年11月6日18:00 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$$
1+(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)
$$
は、$2$ で最大何回割り切れるか。
半角数字のみで答えよ。
たとえば $5555$ 回割り切れると答えるのであれば1行目に
5555
と入力せよ。
公開日時: 2020年10月21日19:26 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
図のように2つの半円が配置されています。(右側の半円の直径の一端は左側の半円の中心に一致する。)赤、緑で示した線分の長さがそれぞれ3,10のとき、青で示した四角形の面積を求めてください。
ただし、図中点線で示した直線は2つの半円の共通接線です。
半角数字で解答してください。
公開日時: 2020年10月15日19:26 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
半径と中心角が等しい扇形に正方形が内接しています。青い正方形と赤い正方形の面積の大小関係を調べてください。
ただし、同じ印をつけた部分の長さは等しいです。
(青の面積) > (赤の面積) なら 1
(青の面積) = (赤の面積) なら 2
(青の面積) < (赤の面積) なら 3
を、半角数字で解答してください。
公開日時: 2020年10月5日19:38 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
図中の赤い線分の長さが10のとき、青で示した四角形の面積を求めてください。
半角数字で解答してください。