半円の直径と弦に接する円

tb_lb 自動ジャッジ 難易度: 数学 > 中学数学
2021年5月2日22:19 正解数: 5 / 解答数: 8 (正答率: 62.5%) ギブアップ不可
初等幾何 長さ

【補助線主体の図形問題 #013】
 今日は和算的な構図の問題を用意してみました。計算量は大したことがないのですが、暗算ではちょっと厳しいかもしれません。簡単な計算用紙をお手元にご用意の上お楽しみください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

正方形と四分円

tb_lb 自動ジャッジ 難易度:
3月前

10

【補助線主体の図形問題 #068】
 今週の図形問題は面積関係の問題です。暗算で処理するには厳しい程度の計算が待っています(とはいえ、そこまで複雑ではありません)。紙&ペンをご用意の上、お楽しみください。補助線が活躍するのはいつも通りです!

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}^2$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

正方形と2つの円

tb_lb 自動ジャッジ 難易度:
18月前

6

【補助線主体の図形問題 #015】
 今回は円がらみの求長問題にしてみました。地道なド根性解法もありますが、補助線次第では暗算も可能なように仕込んであります。お好みの解法・手法で挑戦してみてください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

求長問題12

Kinmokusei 自動ジャッジ 難易度:
22月前

4

問題文

長方形・正方形・円が図のように配置されています。赤で示した線分の長さが7、長方形の面積が12のとき、青い線分の長さとしてあり得るものを全て求めてください。

解答形式

解答は$\sqrt{\fbox {アイ}},\frac{\sqrt{\fbox{ウエオ}}}{\fbox カ}$となります。文字列「アイウエオカ」を解答してください。ただし、根号の中身が平方数の倍数とならないように解答してください。

求面積問題17

Kinmokusei 自動ジャッジ 難易度:
21月前

5

問題文

2つの合同な長方形を図のように配置しました。赤い三角形の面積が10のとき、青い凹四角形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題22

Kinmokusei 自動ジャッジ 難易度:
17月前

6

問題文

長方形の4頂点と、ある1点を結びました。青い部分の面積の合計が10のとき、赤い三角形の面積を求めてください。

※半円は問題に関係ありません

解答形式

半角数字で解答してください。

19月前

17

【補助線主体の図形問題 #011】
 今日は傍心を登場させてみました。傍心への慣れ具合により難易度の体感が大きく変わるかもしれません。暗算でも解けるように調整してあります。存分に傍心の性質をお楽しみください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。


【補助線主体の図形問題 #017】
 今回は方針により計算量が変化する問題を用意しました。とはいえ暗算で解くには幾分厳しいです。簡単な計算用紙&筆記具をお手元にご用意の上で挑戦してみてください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

円と3本の弦

tb_lb 自動ジャッジ 難易度:
17月前

10

【補助線主体の図形問題 #019】
 1週空いての久しぶりの出題となりました。今回はガリガリ長さを求める解法から暗算解法まで解法の種類多めとなっています。腕に覚えのある方は暗算解法だけでなく、解法の数にも挑戦してもらえたら嬉しいです!

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

18月前

11

$【補助線主体の図形問題 #016】
 先週は出題を休んでしまいましたが、今週はしっかり出題します。今回は求角問題を用意しました。暗算解法を仕込んであるのはいつも通り。ぜひぜひ補助線の魅力を感じてください!

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12^{\circ}$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

長方形と正六角形

tb_lb 自動ジャッジ 難易度:
5月前

7

【補助線主体の図形問題 #062】
 今週の図形問題は経験の多寡で難易度の感じられ方が大きく変わるかもしれません。自信のある方は暗算で、そうでない方も紙&ペンを使いながらじっくり補助線を引きつつお楽しみください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

8月前

2

問題文

図の条件の下で、青で示した線分の長さ $x$ を求めてください。
なお、緑で示した2つの角の大きさは等しく、ピンクで示した点は三角形の重心です。

解答形式

半角数字で解答してください。

3月前

2

【補助線主体の図形問題 #067】
 今週の図形問題です。中点と$30^{\circ}$を2個ずつ仕込んでいます。補助線でうまく活躍の場を与えてください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。