数学の問題一覧

カテゴリ
以上
以下

三角形の性質

sakagamisinobanai 採点者ジャッジ 難易度:
2年前

5

問題文
三角形ABCがあり、角BAC=90°、BCの中点をMとしたとき角ACB=45°でありAMの長さは2である。この三角形の面積を求めなさい。

解答形式

直角三角形と垂心

tb_lb 自動ジャッジ 難易度:
2年前

12

【補助線主体の図形問題 #098】
 今週の図形問題の素材は垂心です。いろいろなところに現れる直角をうまいこと処してください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

四分円と正八角形

tb_lb 自動ジャッジ 難易度:
2年前

6

【補助線主体の図形問題 #097】
 今週の図形問題です。今週は小ネタを詰めたような問題となりました。補助線で見破ってみてください。とはいえ、解法は自由です。お好きな解法でぜひ解いてやってください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #096】
 1週出題を休んでしまいましたが、今週の図形問題です。今回は重めの面積関係の問題となりました。たっぷりと補助線を引きながら、存分に楽しんでもらえたら幸いです。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #095】
 今週の図形問題は求角です。求角でありながら長さの条件を入れてみました。補助線が活躍するのはいつも通り。どうぞ補助線主体の図形問題をお楽しみください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

2つの正方形

tb_lb 自動ジャッジ 難易度:
2年前

13

【補助線主体の図形問題 #094】
 今週の図形問題です。上手いこと補助線を引いて、出題の意図を見破ってください。腕に覚えのある方は暗算解法を狙うのもよろしいかと思います。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

三角形と4つの傍接円

tb_lb 自動ジャッジ 難易度:
2年前

7

【補助線主体の図形問題 #093】
 今週の図形問題は傍接円がテーマで、傍接円を4つも登場させてしまいました。補助線を頼りに傍接円だらけの図形をねじ伏せてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

2年前

12

【補助線主体の図形問題 #092】
 今週の図形問題です。解く人によって難易度の感じ方が大きく変わりそうな問題となりました。暗算で処理するのは厳しいでしょう。紙&ペンをお手元にご用意の上お楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

問題❹

rakuraku1216 自動ジャッジ 難易度:
2年前

11

4×4の16マスがある。このマス目を赤、青、黄、緑で塗ることを考える。

A:縦と横のどの辺をとっても赤、青、黄、緑が一回ずつ出現する。
B:以下のように4つの部屋に分割したときにどの部屋をとっても赤、青、黄、緑が1回ずつ出現する。
□□|□□
□□|□□
__|__
□□|□□
□□|□□

AとBを両方満たす塗り方は何通りありますか?
(例:30通りだったら、30と答えなさい)

問題❶

rakuraku1216 自動ジャッジ 難易度:
2年前

15

ある座標平面がある。
(6、2)(6、0)(8、0)(8、18)(0、18)(0、2)(0、0)をそれぞれ
点A B C D E F G とする。この時、四角形ABGFと六角形DCBAFEの面積をそれぞれ2等分する直線Lを引くことを考える。
直線Lのy切片の絶対値を求めよ。

問題❸

rakuraku1216 自動ジャッジ 難易度:
2年前

15

A以上B以下の整数に出現する1の個数を、A●Bと表すとする。
例えば6、7、8、9、10、11には、3つの1が出現しているため、6●11=3 となる。

(15●30)●(220●X)=12 のとき、考えられる整数Xとして最も大きいものを答えなさい。

2年前

4

【補助線主体の図形問題 #091】
 図形の構造から面積比を求める問題を「面積関係」を称してしばしば出題してきました。今回はちょっと趣向を変えて、逆に面積比から辺比を求める問題です。式を立てるところまでは暗算で行けます。補助線と存分に戯れてください!

《参考》過去出題分から面積関係を問うている問題を一部抜粋

${}$ 他にもこのような問題にあたりたい場合には
https://pororocca.com/problem/?category=5&name=&dif_min=&dif_max=&tag=%E9%9D%A2%E7%A9%8D&sort_by=oldest
にアクセスすると一望できます。ただし、いわゆる普通の求積問題も交じっていることをご了解願います。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。