三角形の重心と内心

tb_lb 自動ジャッジ 難易度: 数学 > 中学数学
2023年8月6日22:29 正解数: 5 / 解答数: 9 (正答率: 55.6%) ギブアップ不可
初等幾何 長さ

全 9 件

回答日時 問題 解答者 結果
2023年11月19日22:57 三角形の重心と内心 nmoon
正解
2023年11月19日22:56 三角形の重心と内心 nmoon
不正解
2023年8月12日13:55 三角形の重心と内心 miq
正解
2023年8月7日11:25 三角形の重心と内心 nakakun
正解
2023年8月7日3:52 三角形の重心と内心 naoperc
正解
2023年8月7日1:14 三角形の重心と内心 ゲスト
正解
2023年8月7日1:08 三角形の重心と内心 ゲスト
不正解
2023年8月7日1:00 三角形の重心と内心 ゲスト
不正解
2023年8月7日0:53 三角形の重心と内心 ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています


【補助線主体の図形問題 #100】
 たまに休みつつも、ほぼ毎週出題を続け、100問目に到達しました! いつも解いてくださっている方も、ふらりとやって来て解いてくださる方も、ありがとうございます!! これからも地道に出題を続けて参ります。今後ともよろしくお願いします。
 今回は100問目記念として特別に2問同時に出題します。次の101問目 https://pororocca.com/problem/1252/ はこの100問目と比べて単純に正方形の数が増えています。こちらを正解したうえで次の問題に進むのをお勧めします。
 なお、正方形$\mathrm{ABCD}$の1辺が容易に求まりますが、それは使わずに$\square \mathrm{ABCD} : \square \mathrm{DEFG}$を求めるのを目標にすると計算量が減ります。参考にしてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

長方形と2つの内接円

tb_lb 自動ジャッジ 難易度:
3月前

5

【補助線主体の図形問題 #114】
 今週の図形問題です。うまいこと補助線を引けば暗算で処理できるようになっています。初等幾何の皆さんは頭の中だけで処理し切る暗算解法に挑戦してみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

43日前

4

【補助線主体の図形問題 #120】
 今週の図形問題です。普段は補助線次第で暗算で処理できる問題を隙あらば入れているのですが、今回は計算量が多めです。補助線と工夫を武器に計算量を減らす道を探ってみてください。計算力に自信のある方は、どうぞその計算力でなぎ倒してもいいですよ!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

4月前

6

【補助線主体の図形問題 #108】
 問題投稿日の前日7月22日は、分数の$\dfrac{22}{7}$が$\dfrac{22}{7} = 3.\overline{142857} \fallingdotseq \pi$と円周率$\pi$に近い値をとることから「円周率近似値の日」に定められています。というわけで1日遅れですが、円の求角問題を用意しました。どうぞ軽くひねってやってください。

解答形式

${
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

4月前

6

【補助線主体の図形問題 #107】
 今週の図形問題です。3連休の中日、ちょっと重めの問題を用意しました。そのかわり(想定解では)計算はわずか、暗算で処理できる分量です。どうかお好きな解法でお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

正方形と内接円

tb_lb 自動ジャッジ 難易度:
3月前

3

【補助線主体の図形問題 #113】
 今週の図形問題は軽めの求積問題にしてみました。勘で答えたくなるかもしれませんが、一旦その欲求は抑えて、ぜひ論証し切ってみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #103】
 今週の図形問題です。今回は鏡映三角形に中点と垂線を組み合わせてみました。これらが出会ったときに何が起こるか、補助線を引きつつぜひお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

5月前

7

【補助線主体の図形問題 #104】
 今週の図形問題です。2円と共通外接線というありがちな構図ですが、そこに長方形まで参上してしまいました。どうぞうまいこと処理してやってください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #106】
 今週の図形問題です。外接円に接線、角の2等分線、垂線と要素がてんこ盛りの問題になりました。これらが出会うとき、どんな性質が生まれるのか、補助線の力を借りてぜひご確認ください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

直角三角形と内心

tb_lb 自動ジャッジ 難易度:
22月前

12

【補助線主体の図形問題 #044】
 今週の図形問題は内心を素材にしてみました。うまい補助線が引けると暗算で処理できるのはいつも通りですが、内心の懐の広さ(?)ゆえに解法の選択肢も広いです。暗算とか気にせずお好きなように解いてもらえたら本望です。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

4月前

14

【補助線主体の図形問題 #109】
 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #052】
 今週の図形問題もシンプルにしてみました。シンプルなだけに補助線の威力が存分に味わえるかと思います。頭の中で完全に処理し切れる解法を想定していますが、これだけ単純な構図だと解法も多様でしょう。自由な手法でお楽しみいただければ本望です。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。