数学の問題一覧

カテゴリ
以上
以下

データの分析・数列

oolong_tea 自動ジャッジ 難易度:
5月前

1

問題文

$1$ から $30$ までの自然数が書かれたカードがそれぞれ $1$ 枚ずつの計 $30$ 枚ある。
この中から $1$ 枚を引き,書かれている数字を確認してから束に戻す操作を $11$ 回繰り返す。
この $11$ 回の操作で得られた自然数を小さい順にならべ,$A_{1}$ から $A_{11}$ とする。
$A_{1}$ から $A_{11}$ は以下の条件を満たしている。

<条件>
① $A_{1}$ から $A_{11}$ は相異なる自然数である。
② データの範囲は $27$ である。
③ データの四分位範囲 [$\mathrm{IQR}$] は $9$ である。
④ 四分位数 [$Q_1,Q_2,Q_3$] はこの順に等比数列になっている。
⑤ 中央値と平均値 [$\bar{A}$] の差の絶対値は $1$ である。
⑥ $A_7$ から $A_{11}$ までの $5$ つの数の和は $A_1$ から $A_5$までの $5$ つの数の和のちょうど $2$ 倍である。
⑦ $A_{1}$ から $A_{11}$ の中に立方数が $2$ つある。
⑧ このデータのうち四分位数を除いた $8$ 個の数字を $2$ つずつに分けてできた $4$ つの数字の組
  $(A_1,A_2),(A_4,A_5),(A_7,A_8),(A_{10},A_{11})$ について、それぞれの組に $1$ つずつ素数がある。
⑨ このデータには外れ値が $1$ つ存在する。ただし外れ値は以下の通りに定義する。
   [$Q_1-1.5 \times \mathrm{IQR}$ 以下 または $Q_3+1.5 \times \mathrm{IQR}$ 以上]

問 このデータの要素を決定せよ。

解答形式

$A_1$ から $A_{11}$ までの11個の自然数を半角空白区切りで1行で回答

投稿者より

問題の不備などありましたら,
感想から教えてくださるとありがたいです。

5月前

4

問題文

どの$2$辺の長さも等しくない鋭角三角形$ABC$の外心,垂心をそれぞれ$O,H$とし,辺$BC$の中点を$M$とします.
$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,直線$DE$と直線$AB$の交点を$P$,直線$DF$と直線$AC$の交点を$Q$とすると,$$
EF=4 AH=5 PQ||AM$$が成り立ちました.直線$PQ$と直線$OH$との交点を$R$とするとき,線分$OR$の長さの$2$乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表されるので,$a+b$の値を解答してください.

解答形式

半角で解答してください.

計算問題

18jn-055@izo-ed.jp 自動ジャッジ 難易度:
5月前

15

工夫して答えなさい。

99×99=?


1 次の式を計算せよ。

(1) −5−(−3)

6月前

20

問題文

$ $ 原点を $O$ とする $xy$ 平面において,(正とは限らない)整数 $n$ に対し座標 $(60, n)$ の点を $P_n$ と表します.$n$ を整数全体で動かしたとき,線分 $OP_n$ の長さとしてあり得る整数値の総和を求めて下さい.

解答形式

半角英数にし,答えとなる正整数値を入力し解答して下さい.

6月前

5

問題文

点$O_1,O_2$を中心とする円$\omega_1,\omega_2$が異なる$2$点$A,B$で交わっている。これらの共通外接線のうち直線$O_1O_2$に関して$B$と同じ側に接点を持つ物を$l$とし、$\omega_1,\omega_2$との接点を$S_1,S_2$とする。

直線$AB$と$l$の交点を$X$とし、$X$から$\omega_1,\omega_2$に引いた($l$以外の)接線の接点を$T_1,T_2$とすると、$O_1,T_2,S_2$ / $O_2,T_1,S_1$はそれぞれ一直線上にあった。

$\omega_1$の半径が$\sqrt{3}$、$S_1X=\sqrt{2}$のとき、五角形$AO_1S_1S_2O_2$の面積を求めてください。

解答形式

求める値は正整数$a$及び、互いに素な正整数$b,c$、平方因子を持たない正整数$d$により$a+\dfrac{b\sqrt{d}}{c}$
と表せるので、$a+b+c+d$を半角英数字で入力してください。

垂心と外心と〇心

Rak 自動ジャッジ 難易度:
6月前

2

問題文

△ABC(AB<AC)の垂心をH、外心をOとし、直線HOと辺AB,BCの交点をD,Eとし、点Eは線分BCを3:1に内分している。このとき、AD/DBの値を求めなさい。ただし、Bの側からD,H,O,Eの順に位置している。

解答形式

互いに素な正の整数a,bを用いて、b/aの形で答えてください。
解答には
AD/DB=b/aと答えてください。

不等式の極み

ac 自動ジャッジ 難易度:
6月前

3

問題文

ある数AとBがある。
(A<B)のとき次の式は「成り立つ」か成り立たないか。
成り立たない場合は正しい等号、不等号を書け。

$$
\frac{B}{A}-AB<(\frac{A}{B})^{2}
$$

因数分解の応用

ac 自動ジャッジ 難易度:
6月前

11

問題

次の式を計算しなさい。

$$
\frac{(28^{2}+28-27^{2}+27)^{2}}{5!^{2}}-(\frac{11}{12})^{2}
$$

因数分解のお子様セット

Watagumo 自動ジャッジ 難易度:
6月前

1

問題

$$
2x^{11}+3x^{10}-6x^9+x^8+2x^7
+11x^6-4x^5+7x^4+6x^3+9x^2+2x-3を因数分解せよ
$$

解答形式

括弧の次数【$()^2$の形】の高い順に並べてください。()の中のxの式の次数が高いものは後半に並べてください。xの式の次数が同じ、かつ括弧の次数が同じもの同士では、1次の項の係数が大きい順(x,2xだったら2xが含まれる式の方を先に書く)にしてください。

Final 5

seven_sevens 採点者ジャッジ 難易度:
6月前

4

$a$は$x$と独立であるとする。
$x$の方程式
$$(\cos^4x)^{\log_2(a\sin x)+1}=(a\sin2x)^{\log_2(a\sin2x)}$$
の$0\leqq x\leqq \frac\pi2$における解を$y$とする。
この時、以下の値を求めよ。
$$\int_0^1\frac1{\sin^2y}da$$

Final 0

7777777 採点者ジャッジ 難易度:
6月前

2

この問題には、必ず最初に解答をしてください。
解答はどんなものでも構いません。もし迷った際は、以下の文章をコピーペーストしても構いません。
「生命、宇宙、そして万物についての究極の疑問の答えは42です」
最初に解答されなかった場合、以降の解答は無効となります。