数学の問題一覧

カテゴリ
以上
以下

KOTAKE杯001(L)

MrKOTAKE 自動ジャッジ 難易度:
8月前

31

問題文

$AB=30,AC=36$の三角形$ABC$があり線分$BC$上に$BDEC$の順に並び$BD:DE:EC=1:5:3$となるよう
点$D,E$をとると,線分$AB$と$AC$に接し点$D,E$を通る円が存在した.
このとき$BC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(A)

MrKOTAKE 自動ジャッジ 難易度:
8月前

64

問題文

三角形$ABC$の外心を$O$とすると以下が成立した.
$AO=25,BC=48 $
このとき三角形$ABC$の面積としてあり得る最大値を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(K)

MrKOTAKE 自動ジャッジ 難易度:
8月前

48

問題文

$AB=AC=90$の三角形$ABC$があり線分$BC$の中点を$M$とすると
三角形$ABC$の垂心$H$は線分$AM$を$4:1$に内分した.
このとき三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(B)

MrKOTAKE 自動ジャッジ 難易度:
8月前

55

問題文

$AB=60,BC=70,CA=80$の三角形$ABC$があり,内心を$I$としたとき
$AI$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(O)

MrKOTAKE 自動ジャッジ 難易度:
8月前

33

問題文

三角形$ABC$の重心を$G$とすると$AB=5,AC=7,BG=2$であった.
このとき$CG$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(S)

MrKOTAKE 自動ジャッジ 難易度:
8月前

32

問題文

$AB:AC=1:2$である三角形$ABC$があり$AC$の中点を$M$とする.
三角形$ABM$の外接円と$BC$の交点のうち$B$でないものを$D$とおき,
$AC$上に$∠ADE=90°$となる点 $E$をとると$CD=30,DE=10$であった.
このとき$BD$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(E)

MrKOTAKE 自動ジャッジ 難易度:
8月前

44

問題文

三角形$ABC$があり三角形$ABC$の外接円における点$A$の接線と直線$BC$は直交し,
$AB=15,AC=20$であった.このとき三角形$ABC$の面積を解答しなさい.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください

KOTAKE杯001(C)

MrKOTAKE 自動ジャッジ 難易度:
8月前

55

問題文

$AB=33,BC=41,CA=26$の三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(H)

MrKOTAKE 自動ジャッジ 難易度:
8月前

42

問題文

中心を$O$とする円上に点$A,B$があり,線分$AB$上に点$P$をとると$AB=7,AP=2,OP=3$であった.
このとき$AO$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(D)

MrKOTAKE 自動ジャッジ 難易度:
8月前

77

問題文

三角形$ABC$の内心を$I$外心を$O$とする.
$∠AIB=145°$のとき$∠AOB$の角度を度数法で解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(Q)

MrKOTAKE 自動ジャッジ 難易度:
8月前

23

問題文

$AB=15,AC=24$の鋭角三角形$ABC$があり内心を$I$,垂心を$H$とすると
$4$点$BCHI$は同じ円 $Γ$上にあった.このとき円 $Γ$の半径の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(T)

MrKOTAKE 自動ジャッジ 難易度:
8月前

38

問題文

三角形$ABC$の重心$G$に関して$A$と対称な点を$D$とすると$4$点$ABDC$は共円であり,
$AB=6,BD=4$であった.このとき$AD$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.