公開日時: 2024年4月20日16:06 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
以下の関数$f(x)$の最小値の$2$乗を求めてください。($x$は実数)
$$
\begin{align}
f(x)= \ &\bigg\{48\lim_{N\rightarrow\infty}\Bigg(\sum_{k=0}^{N}\frac{\sqrt{N^2+k^2}}{N^2}\Bigg)-12\log\big(3+2\sqrt{2}\big)\bigg\}x^4\\
&+\sqrt{2} \ d\Bigg(\sum_{n=10}^{20}{}_n\mathrm{C}_{10}\Bigg)x^3-\bigg\{\max_{\theta\in\mathbb{R}}\bigg|\begin{pmatrix}96\\96\sqrt{7}\end{pmatrix}\cdot\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}\bigg|\bigg\}x^2\\
&-768\sqrt{2}\Bigg(\mathrm{Re}\sum_{m=0}^{\infty}\Big\{2^{-\frac{m}{2}}\Big(\cos\frac{m\pi}{12}+i\sin\frac{m\pi}{12}\Big)\Big\}-\frac{\sqrt{3}}{2}\Bigg)x+120\sqrt{2}
\end{align}
$$
ただし、$d(n)$は約数個数関数、縦書きの()はベクトル、$|A|$は絶対値、$\max_{\theta\in\mathbb{R}}f(\theta)$は$\theta$を実数範囲で動かしたときの$f(\theta)$の最大値、$\mathrm{Re}(z)$は$z$の実部を表します。
非負整数を半角英数字で入力してください。
公開日時: 2024年4月17日12:17 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
図1は、あるへこみのない立体の展開図です。図1は合同な正方形2個、合同な菱型4個、合同な台形8個からなり、これを組み立てると2個の正方形1組がたがいに向かい合い、2個の台形4組がたがいに向かい合い、2個の菱形2組がたがいに向かい合います。また、図2は図1に使われている3種類の図形を、1目盛りが1cmの方眼用紙に描いたものです。図1を組み立ててできる立体の体積は何cm$^3$ですか。
図1
図2
四捨五入して整数で答えてください。
例)$\frac{17}{4}cm^3$→4
公開日時: 2024年4月15日12:20 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
$∠$A=69°、$∠ $B=66°、$∠ $C=45°である三角形ABCがあります。辺AC上にAB=DBとなる点Dをとり、辺BC上にAB=AEとなる点Eをとりました。DBとEAの交点をFとします。三角形AFBの周りの長さが12cmの時、三角形ABCの面積の2倍と三角形ABFの面積の和は何cm$^2$ですか。
半角数字で入力してください。
例)10
公開日時: 2024年4月9日12:54 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
双六でnマス目に止まる確率を求めよ。
ただし、n≦10、さいころは1個とする。
初投稿で難易度設定とか解答の作り方とかよく分かってないので間違っていたらすみません。
・アルファベット&記号は全て半角(ただし、マイナスについては基本的に「ー」を使い、aのb-1乗のような場合では「-」を使います。)
・a分のbのc乗→(b/a)^c
・b/a+d/cのようなものは1項にまとめてください。
・場合分けがある場合は
n≦aのとき(解答)
b≦n≦cのとき(解答)
といったように改行して答えてください。