公開日時: 2024年6月22日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
$ $ $3×4$ で構成された $12$ マスのマス目があります.すべてのマスが,初期状態では白色になっています.これらのマスを,灰色あるいは黒色に塗ることを考えます.
$ $ マスを塗るためには持ち点を消費します.持ち点は初期状態では $12$ 点です.
$ $ マス目の色は,以下の通りに塗り替えることができます:
$ $ また,マス目を塗る上で以下を守る必要があります:
$ $ このとき,全ての持ち点を消費した後のマス目の塗られ方は全部で何通りありますか?
$ $ ただし,反転・回転して一致するものは区別します.
非負整数を半角で解答してください.
公開日時: 2024年6月22日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
$ $ 正方形の中を等間隔に区切ってできた $6×6$ のマス目があります.正方形の中心を中心として点対称となるようにマス目を塗ることを考えます.
$ $ 正方形全体で $10$ マスちょうどを塗るとき,マス目の塗られ方は何通りありますか?ただし,反転・回転して一致するものは全て区別します.
非負整数を半角で解答してください.
公開日時: 2024年6月22日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
$ $ p,d,q,b,a,e,s の $7$ 文字を使い,$6$ 文字の文字列を作ることを考えます.(使わない文字が必ず $1$ 文字以上出てきます.)
$ $ 文字列において,$1,6$ 文字目,$2,5$ 文字目,$3,4$ 文字目が後述の対応する文字どうしになるようにする必要があります.
$ $ 対応する文字は以下のとおりです.
$ $ なお,d と p のように,対応する文字どうしであり指定された文字目に $2$ 文字がいれば文字列内で順序が入れ替わってもよいものとします.
$ $ また,この文字列内において,同じ文字を使えるのは $2$ 回までとします.
$ $ 以上の条件を全て満たした文字列は全部でいくつありますか?
非負整数を半角で解答してください.
公開日時: 2024年6月22日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
$ $ $1$ を $3$ つ,$2$ を $1$ つ,$7$ を $2$ つを全て使い,それらを並べ替えてできた長さ $6$ の文字列は全部でいくつありますか?
$ $ ただし,同じ文字は区別しません.
非負整数を半角で解答してください.
公開日時: 2024年6月17日22:02 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい
半角で、3人の班=Xで答えるものとする
公開日時: 2024年6月17日0:53 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
正方形 $ABCD$ の辺 $BC$ 上に点 $E$ をとると,
$$BE=7,\ \ \ \ CE=5$$が成り立ちます.$E$ を中心とした半径 $7$ の円を $O$ とし,正方形 $ABCD$ の内部かつ円 $O$ の周上の点 $F$ をとると直線 $DF$ は円 $O$ の接線となりました.このとき,線分 $CF$ の長さは正整数 $a,b$ と素数 $c$ を用いて $\displaystyle{\frac{a+\sqrt{b}}{c}}$ と書けるので $a+b+c$ の値を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記
答えひらがなな訳ありませんでした、失礼しました