数学の問題一覧

カテゴリ
以上
以下

最大・最小問題

zyogamaya 自動ジャッジ 難易度:
3年前

19

問題文

$a,b,c$がいずれも正の実数であり、$a+b+c=5,abc=1$が成り立つとき、$ab+bc+ca$の最小値を求めよ。

解答形式

答えは既約分数になります。/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7

二重根号

zyogamaya 自動ジャッジ 難易度:
3年前

14

問題文

実数$x$の方程式$3\sqrt{x+1-4\sqrt{x-3}}=x-1$を解け。

解答形式

半角数字、またはTexで解答してください。$x=$は書かなくて良いです。

求面積問題15

Kinmokusei 自動ジャッジ 難易度:
3年前

11

問題文

緑色の五角形の面積を求めてください。
紫でしめした3つの角は等しく、赤同士、青同士の線分はそれぞれ等しい長さです。

解答形式

半角数字で解答してください。

有名な解法を使いたい

Kinmokusei 自動ジャッジ 難易度:
3年前

2

問題文

次の文章の空欄を埋めてください。ただし、以下の文章全てにおいて$x>0$とします。
$(1.1)$
$f(x)=x+4x^{-2}$の最小値を、微分を用いて求めよう。まず、
$$f'(x)=\fbox ア-\frac{\fbox イ}{x^3}$$である。$f'(x)$の符号は$x=\fbox ウ$の前後でのみ変化するから、$f(x)$は$x=\fbox ウ$で極値をとり、さらにそれが最小値であることが分かる。したがって、$f(x)$の最小値は$\fbox エ$である。

この問題は$(1.2)$に示すような解法が知られている。

$(1.2)$
相加相乗平均の関係式を用いて$f(x)$の最小値を求める。$a_1+a_2=1$を満たす$0$以上の実数$a_1,a_2$を用いて、
$$f(x)=a_1x+a_2x+\frac{4}{x^2}\ge3\left(a_1x\cdot a_2x\cdot\frac{4}{x^2}\right)^{\frac 13}=3(4a_1a_2)^{\frac 13}$$とする。いかなる$a_1,a_2$の組に対してもこの不等式は成立する。一方で、等号を成立させる$x$が存在するには、$a_1x=a_2x$でなければならないから、$a_1=a_2$となる。このとき、等号成立条件
$$a_1x=a_2x=\frac{4}{x^2}$$を満たす$x$は存在して、その値は$x=\fbox ウ$で、不等式の右辺の値は$\fbox エ$となり、最小値が得られる。

$(2)$
$g(x)=x+3x^{-1}+x^{-2}$の最小値を、$(1.2)$の解法に準じて求めよう。
$(1.2)$中の議論と同様に、等号成立条件を考えれば、同類項の係数(前問では$a_1,a_2$にあたる)が異なってはならないと言える。したがって、$3$つの自然数$b_1,b_2,b_3$を用いて、$$g(x)=b_1\cdot \frac{x}{b_1}+b_2\cdot\frac{3}{b_2x}+b_3\cdot\frac{1}{b_3x^2}$$と考えることにする(即ち、$b_1$個の$x/b_1$、$b_2$個の$3/b_2x$、$b_3$個の$1/b_3x^2$の和と考える)。相加相乗平均の関係式を適用したときに、累乗根の中身が定数となるには、$b_1=\fbox オb_2+\fbox カb_3$であればよい。等号成立条件は$$\frac{x}{b_1}=\frac{3}{b_2x}=\frac{1}{b_3x^2}$$である。中辺と最右辺の等式から、$x=b_2/(3b_3)$であり、これと最左辺・最右辺の等式から、$$\frac{b_2}{3b_3\left(\fbox オb_2+\fbox カb_3\right)}=\frac{9b_3}{b_2^2}$$整理して、$$b_2^3-\fbox{キク}b_2b_3^2-\fbox{ケコ}b_3^3=0$$この式を解くと、$b_2/b_3=\fbox サ/\fbox シ$を得られるので、$b_1:b_2:b_3=\fbox ス:\fbox セ:\fbox ソ$であれば良いことが分かる。これより、$$g(x)\ge\left(b_1+b_2+b_3\right)\left(\left(\frac{x}{b_1}\right)^{b_1}\left(\frac{3}{b_2x}\right)^{b_2}\left(\frac{1}{b_3x^2}\right)^{b_3}\right)^{\frac{1}{b_1+b_2+b_3}}=\frac{\fbox{タチ}}{\fbox ツ}$$であり、$x=\fbox テ$で等号が成立して、最小値となる。

解答形式(要注意!)

以下のこと(特に2つ目)に注意して解答してください。

・$\fbox ア~\fbox テ$には$0$以上$9$以下の整数が入ります。
・式の係数・分母の空欄$\left(\fbox オ・\fbox カ・\fbox シ・\fbox ツ\right)$には$1$が入る可能性もあります。
・$\fbox ス~\fbox ソ$は、$\fbox ス+\fbox セ+\fbox ソ$が最小となるようにしてください。また、分数は既約分数にしてください。

文字列アイウエを$1$行目
文字列オカキクケコを$2$行目
文字列サシスセソを$3$行目
文字列タチツテを$4$行目
に入力して解答してください。

求長問題11

Kinmokusei 自動ジャッジ 難易度:
3年前

15

問題文

長方形$ABCD$を底面とする四角錐$P-ABCD$があります。$PA=1,PB=4,PC=8$のとき、$PD$の長さを求めてください。

解答形式

半角数字で解答してください。

求値問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

次の文章の空欄を埋めてください。

$n$個の実数$x_1,x_2,\cdots,x_n$が、$x_1+2x_2+3x_3+\cdots+nx_n=n$を満たすとき、$x_1^2+x_2^2+\cdots+x_n^2$の最小値を$m_n$とすると、
$$
m_n=\frac{\fbox アn}{(n+\fbox イ)(\fbox ウn+1)}
$$
であり、
$$
\lim_{n\rightarrow\infty}\left(m_1+\frac{m_2}{2}+\cdots+\frac{m_n}{n}\right)=\fbox{エオ}\left(-\frac{1}{\fbox カ}+\ln{\fbox キ}\right)
$$
である。

解答形式

$\fbox ア~\fbox キ$には$1$以上$9$以下の整数が入ります。文字列アイウエオカキを半角数字で解答してください。
例: $\fbox ア=1,\fbox イ=2,\fbox ウ=3,\fbox {エオ}=45,\fbox カ=6,\fbox キ=7$ $\rightarrow$ $1234567$ と解答

求面積問題14

Kinmokusei 自動ジャッジ 難易度:
3年前

14

問題文

周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。

解答形式

半角数字で解答してください。

3年前

4

問題文

しずかちゃんがシャワーを浴びようとしてお湯を出し始めた。はじめのお湯の温度は $35$℃で、お湯を出し始めてから $n$ 秒後のお湯の温度は $T_n$℃であるとする。

しずかちゃんは非常に温度に敏感で、シャワーの温度をちょうど $40$℃に設定しないと落ち着かない。そこで、しずかちゃんはお湯を出し始めてから $n=1,2,3...$ 秒後に、シャワーの温度がちょうど $a(40-T_n)$℃だけ上がるように温度調節レバーを操作する。ここで、$a$ は正の定数である。なお、$T_n>40$ のときは $a(T_n-40)$℃だけ温度が「下がる」ように操作するものとする。

$N$ を自然数の定数として、温度調節レバーの操作がお湯の温度に反映されるまでちょうど $N$ 秒かかる。すなわち、しずかちゃんがお湯を出し始めてから $n$ 秒後に温度調節レバーを操作したとき、 はじめから $n+N$ 秒後と $n+N+1$ 秒後の間にシャワーの温度が $a(40-T_n)$℃だけ上昇する。

さて、$\displaystyle \lim_{n \to \infty} T_n=40$ であれば、しずかちゃんは十分な時間が経つと快適にシャワーを浴びることができる。$a$ が十分小さければ、すなわち温度をできるだけ少しづつ上げていけば、直感的にはこのことは可能である。では、具体的には $a$ はどれほど小さい必要があるのだろうか。そこで、$\displaystyle \lim_{n \to \infty} T_n=40$ が成り立たないような $a$ の最小値を $a_c$ とおく。以下の空欄を埋めよ。

(1) $N=1$ のとき、$a_c=\fbox{ア}$ である。

(2) $N=2$ のとき、$\displaystyle a_c=\frac{\fbox{イウ}+\sqrt{\fbox{エ}}}{\fbox{オ}}$ である。

解答形式

ア〜オには、0から9までの数字または「-」(マイナス)が入る。
(1)の答えとして「ア」にあてはまる数を半角で1行目に入力せよ。
(2)の答えとして、文字列「イウエオ」を半角で2行目に入力せよ。

3年前

17

問題文

正の実数に対して定義され正の実数値をとる関数 $f$ が、任意の正の実数 $x,y$ に対して

$$
f\left(\frac{x+y+1}{xy}\right)=\frac{f(x)f(y)}{x+y+1}
$$

を満たすとき

$$
f\left(\frac{11}{21}\right) = \frac{\fbox{アイウエ}}{\fbox{オカキ}}
$$

である。

解答形式

ア〜キには、0から9までの数字が入る。
文字列「アイウエオカキ」を半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。


問題文

$n$ を正の整数とする。$f(n)=\sqrt{n^4+2n+61\ }$ が整数となるような $n$ を $1$ つ選び、そのときの $f(n)$ の値を答えよ。

なお、$f(n)$ が整数とならない場合や、答えた $f(n)$ の値が正しくない場合は不正解とする。

正解した場合は、まず解説を見よ。また、他のユーザーの回答も見てみよ。

解答形式

あなたが選んだ $n$ における $f(n)$ の値を半角数字で1行目に入力せよ。


問題文

以下の文がそれぞれ正しくなるように、空欄に $0$ から $9$ までの数字を埋めよ。ただし、同じ文字の空欄には同じ文字が入る。

(1)数列 $\fbox{ア}, \fbox{イ}, \fbox{ウ}, \fbox{エ},\fbox{オ}$ には、
$0$ が $\fbox{ア}$ 回、$1$ が $\fbox{イ}$ 回、$2$ が $\fbox{ウ}$ 回、$3$ が $\fbox{エ}$ 回、$4$ が $\fbox{オ}$ 回、それぞれ現れる。

(2)数列 $\fbox{カ}, \fbox{キ}, \fbox{ク}, \fbox{ケ}, \fbox{コ}, \fbox{サ}, \fbox{シ}, \fbox{ス}, \fbox{セ}, \fbox{ソ}$ には、
$0$ が $\fbox{カ}$ 回、$1$ が $\fbox{キ}$ 回、$2$ が $\fbox{ク}$ 回、$3$ が $\fbox{ケ}$ 回、$4$ が $\fbox{コ}$ 回、
$5$ が $\fbox{サ}$ 回、$6$ が $\fbox{シ}$ 回、$7$ が $\fbox{ス}$ 回、$8$ が $\fbox{セ}$ 回、$9$ が $\fbox{ソ}$ 回、それぞれ現れる。

解答形式

ア〜ソには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエオ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「カキクケコサシスセソ」を半角で2行目に入力せよ。

3年前

28

問題文

(1)$\displaystyle \tan\theta=\frac{1}{4}$ のとき、$\displaystyle \tan2\theta=\frac{\fbox{ア}}{\fbox{イウ}}$ である。

(2)連立方程式

$$
\begin{cases}
x_1=x_2(2+x_1x_2) \\
x_2=x_3(2+x_2x_3) \\
x_3=x_4(2+x_3x_4) \\
x_4=x_1(2+x_4x_1)
\end{cases}
$$

を満たす実数 $(x_1,x_2,x_3,x_4)$ の組は全部で $\fbox{エオ}$ 個あり、そのうち $\tan20^\circ < x_1 < \tan80^\circ$ を満たすような組は $\fbox{カ}$ 個ある。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカ」を半角で2行目に入力せよ。