y

y

データ分析

y 自動ジャッジ 難易度:
6月前

2

$$
|log_28^{n}-\sqrt{n^2}|の、nが1から10までの奇数のとき、\\中央値はいくらか。
$$

複合計算問題(3)

y 自動ジャッジ 難易度:
6月前

0

$$
方程式\int_{log_28}^\sqrt{n^2}(m-3)dm=|2^\sqrt{16}-log_21024|について\\最小値-8をとるとき、nの値を求めて下さい。
$$

複合計算

y 自動ジャッジ 難易度:
6月前

14

$$
|i^\sqrt{1024}+log_28^{i^2}|
$$

根号と虚数の計算

y 自動ジャッジ 難易度:
6月前

11

$$
i^\sqrt{1024}
$$

絶対値(21)

y 自動ジャッジ 難易度:
6月前

9

$$
|i^{2024}|
$$

複合計算問題

y 自動ジャッジ 難易度:
6月前

0

$$
\int_0^{sin30}(log_2\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{{\sqrt{1024}}^{n}}}}}}}}}-log_216)dn
$$

根号と絶対値と指数・対数の計算

y 自動ジャッジ 難易度:
6月前

2

$$
|2^{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{{1024}}}}}}}}}}}-log_21024|
$$

絶対値(20)

y 自動ジャッジ 難易度:
6月前

11

$$
|2^{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{1024}}}}}}}}}}-8|
$$

絶対値(19)

y 自動ジャッジ 難易度:
6月前

6

$$
|2^{n-1}+1|
$$
$$
nが、整数のとき、上の式は、必ず(α)である。
$$
$$
(1)負(2)正
$$

二次関数と指数・対数(1)

y 自動ジャッジ 難易度:
6月前

5

$$
log_3\frac{27^n}{{9}^{n^2}}における,n,最大値を求めて下さい。
$$
$$
(1)\begin{cases}最大値\frac{1}{3}\\(n=\frac{1}{3})\end{cases}
(2)\begin{cases}最大値\frac{2}{3}\\(n=\frac{5}{6})\end{cases}
(3)\begin{cases}最大値\frac{5}{6}\\(n=\frac{2}{5})\end{cases}
(4)\begin{cases}最大値\frac{9}{8}\\(n=\frac{3}{4})\end{cases}
$$

英語穴埋め問題(13)

y 自動ジャッジ 難易度:
7月前

5

It was marked ( α ) a various street by that persons one day .
$$
(α)に当てはまる適語を選んでください。
$$
$$
(1)off(2)of(3)at(4)to
$$

微分・積分(20)

y 自動ジャッジ 難易度:
7月前

2

$$
方程式\sqrt{\sqrt{m}^{4}}\int_{0}^{cos60゜}(2m+1)dm=log_28^{m+1}\\についての解を求めて下さい。
$$
$$
(1)-\frac{2}{3}(1)-\frac{4}{3}(1)-\frac{7}{3}(1)-\frac{8}{3}
$$

絶対値(18)

y 自動ジャッジ 難易度:
7月前

8

$$
|{i}^{2n+2}|
$$

微分・積分(19)

y 自動ジャッジ 難易度:
7月前

10

$$
f(x)={i}^{n}\\について、n=10003のときのf'(x)の値は、偶数か奇数、\\
どちらですか。
$$
$$
(1)偶数(2)奇数
$$

数列(2)

y 自動ジャッジ 難易度:
7月前

0

$$
{a}_1=1,{a}_n=3{{a}_{n+1}}+n+2\\について、次の問に答えて下さい。
$$
$$
(1){a}_n=-\frac{(ア)}{3}n∔\frac{(イ)}{8}
$$
$$
(2){a}_n>120となるとき、初めて負になるのは、(ウエ)である。
$$

因数分解(2)

y 自動ジャッジ 難易度:
7月前

2

$$
次の因数分解の形はどれか。\\
{m}^{2}{n}^{2}+lm{n}^{2}+{l}^{2}{m}^{2}n+{l}^{2}m{n}^{2}
$$
$$
(1)l(lm+1)(ln+n)(m+mn)
(2)l(ln+m)(mn+1)(l+mn)
(3)l(ln+1)(m+n)(lmn+mn)
(4)l(lm+1)(m+n)(mn+lmn)
$$

因数分解(1)

y 自動ジャッジ 難易度:
7月前

3

$$
次の因数分解した形はどれか。\\
ab+bc+{a}^{2}{b}^{2}+a{b}^{2}c
$$
$$
(1){ab}^{2}(bc+1)
(2){bc}^{2}(ab+1)
(3)2ab(bc+1)
(4)(ab+1)(ab+bc)
$$

絶対値(17)

y 自動ジャッジ 難易度:
7月前

17

$$
|{i}^{2n+1}|
$$