(α) a whole , it is difficult for me to these problems all the time.
(α)に当てはまる適語を選んで下さい。
(1)To
(2)Be
(3)As
(4)Of
$$
恒等式\frac{3ax-b}{(x-1)(2x+1)}=\frac{{cos60゜}+{log_24^a}}{x-1}+\frac{{sin45゜}+{log_327^b}}{2x+1}\\について、a,bについて求めて下さい。
$$
$$
(1)\begin{cases}a=\frac{2}{5}\\b=-\frac{1}{4}\end{cases}
(2)\begin{cases}a=\frac{4}{6}\\b=-\frac{2}{5}\end{cases}
(3)\begin{cases}a=\frac{6}{7}\\b=-\frac{3}{7}\end{cases}
(4)\begin{cases}a=\frac{7}{8}\\b=-\frac{5}{9}\end{cases}
$$
From this home , I had driven (α)the strange burgular with a powerful spray one day.
(α)に当てはまる適語を選んで下さい。
(1)into
(2)from
(3)off
(4)away
This company seems to deal (α)the heart of human not but a various goods every day.
(α)の適語に当てはまる語を選んで下さい。
(1)at
(2)of
(3)to
(4)in
I dropped in (α) her home one day.
(α)に当てはまる適語を選んで下さい。
(1)to
(2)of
(3)at
(4)on
$$
\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}},\frac{1}{\sqrt{40000}},\frac{1}{|{500}{i}^2|}\\の小さい方から順に並べて下さい。
$$
$$
(1)\frac{1}{|{500}{i}^2|}<\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}}
<\frac{1}{\sqrt{40000}}
$$
$$
(2)\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}}<\frac{1}{|{500}{i}^2|}<\frac{1}{\sqrt{40000}}
$$
$$
(3)\frac{1}{\sqrt{40000}}<\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}}<\frac{1}{|{500}{i}^2|}
$$
$$
(4)\frac{1}{\sqrt{40000}}<<\frac{1}{|{500}{i}^2|}<\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}}
$$