MARTH

MARTH

OMC以外に投稿した問題など
OMC以外に投稿した問題など

統計情報

フォロー数31
フォロワー数26
投稿した問題数19
コンテスト開催数1
コンテスト参加数3
解答された数231
いいねされた数10
解答した問題数430
正解した問題数255
正解率59.3%

人気問題

200N

MARTH 自動ジャッジ 難易度:
22月前

41

$0$ 以上 $6$ 以下の整数からなる組 $(a_1,a_2,a_3,a_4,a_5)$ のうち以下を満たすものの個数を求めてください.
$$(a_1a_2)^3+(a_2a_3)^3+(a_3a_4)^3+(a_4a_5)^3+(a_5a_1)^3\equiv0\pmod{7}$$

600A

MARTH 自動ジャッジ 難易度:
6月前

25

$N=9000^2\times 9001$ とし, 以下の条件を満たす整数の組の列 $(x_0,y_0,z_0), (x_1,y_1,z_1) ,\dots,(x_{N},y_{N},z_{N})$ を良い列 と呼びます.

  • $(x_0,y_0,z_0)=(x_{N},y_{N},z_{N})=(0,0,0)$.
  • $n=1,2,\dots,N$ について, $(x_n-x_{n-1},y_n-y_{n-1},z_n-z_{n-1})$ は $(1,-1,0)$ の $6$ 通りの並べ替えまたは $(0,0,0)$ のいずれかに等しい.

このとき良い列について $(x_i,y_i,z_i)=(x_{i-1},y_{i-1},z_{i-1})$ を満たす $i\;(i=1,2,\dots,N)$ の個数を $k$ としたとき $2^k$ をその列の 良さ とします. 良い列すべてについてその良さの総和を $S$ とします. このとき $S$ を素数 $8999$ で割った余りを求めてください.

300A

MARTH 自動ジャッジ 難易度:
20月前

23

正の実数の組 $(x_1,x_2,x_3,x_4,x_5)$ に対し, $a_1=b_1=1
$ および $n=1,2,3,4,5$ について以下を満たす実数の組の列 $(a_1,b_1),(a_2,b_2),\dots,(a_6,b_6)$ を考えます.
$$a_{n+1}=x_n a_n-n b_n,\quad b_{n+1}=x_n b_n$$
$b_6=100$ となるとき, $a_6$ として取りうる値には最大値が存在し, それを $M$ とします. $M$ の最小多項式 $P$ が存在するので, $P(500)$ を求めてください. ただし, $P$ の最高次の係数は $1$ とします.

SMC100-25

MARTH 自動ジャッジ 難易度:
23月前

21

正整数 $m$ に対して, $m$ の正の約数全ての相加平均を $f(m)$ とします.このとき以下を満たす $m$ の総和を求めてください.
$$f(m)=\frac{m}{2}$$

800A

MARTH 自動ジャッジ 難易度:
6月前

16

正の整数 $m$ に対し,
$$f(m)=\sum_{k=0}^m(k+1)k2^k\frac{(2m-k-1)!}{(m-k)!}$$
と置きます.このとき, $f(5000)$ を素数 $5003$ で割った余りを求めてください.

500C

MARTH 自動ジャッジ 難易度:
16月前

15

$a_1+2a_2+3a_3=n$ を満たす非負整数の組 $(a_1,a_2,a_3)$ 全てについて,
$$\frac{(a_1+a_2+a_3)!}{a_1!\times a_2!\times a_3!}$$
の総和を $f(n)$ とします.
$f(n)\equiv 6 \pmod{12}$ を満たす最小の正整数 $n$ を求めてください.

新着問題

700A

MARTH 自動ジャッジ 難易度:
6日前

3

以下で定義される関数 $f(n)$ について, $f(1000)$ を互いに素な正整数 $a,b$ を用いて, $\dfrac{a}{b}$ と表したとき, $ab$ が$2$ で割り切れる最大の回数を求めてください.

$$
f(n)=\sum_{m=1}^{n}\frac{(m+1)m^2n^{n-m-1}}{(n-m)!}
$$

700A

MARTH 自動ジャッジ 難易度:
6日前

3

以下の整数 $2$ つの組からなる関数 $f(n,m)$ について, $f(30000,20000)$ を素数 $4999$ で割った余りを求めてください.

  • $n,m$ のいずれかが $0$ 未満であるとき, $f(n,m)=0$.
  • $f(0,0)=f(0,1)=f(1,0)=1$.
  • $(n,m)\not \in\{(0,0),(0,1),(1,0)\}$ であるとき, 以下が成立.
    $$f(n,m)+f(n-2,m)+f(n,m-2)=2f(n-1,m)+2f(n,m-1)+2f(n-1,m-1)$$.

400A

MARTH 自動ジャッジ 難易度:
7日前

4

以下で定義される関数 $f(n)$ について, $f(1000)$ を互いに素な正整数 $a,b$ を用いて, $\dfrac{a}{b}$ と表したとき, $ab$ が$2$ で割り切れる最大の回数を求めてください.

$$
f(n)=\sum_{m=1}^{n}\frac{mn^{n-m-1}}{(n-m)!}
$$

500A

MARTH 自動ジャッジ 難易度:
19日前

4

以下で定義される関数 $f$ について, $f(15000,25000)$ を素数 $4999$ で割った余りを求めてください.
$$f(m,n)=\sum_{\ell=1}^{n}\sum_{\substack{a_1,\cdots,a_{\ell}\geq 1\\\\ a_1+\cdots +a_{\ell}=n}}(-1)^{\ell}\binom{m}{a_1}\cdots \binom{m}{a_{\ell}}$$
$$\quad$$

400C

MARTH 自動ジャッジ 難易度:
30日前

6

各頂点の重みが $1$ または $2$ である根付き $2$ 分木で、各頂点の重みの総和が $n$ になるもののうち重みが $2$ である頂点の数が偶数個であるものの個数を $X_n$ ,奇数個であるものの個数を $Y_n$ とするとき $X_{100}-Y_{100}$ を求めてください。
 ただし, 各頂点について右の辺と左の辺は区別するものとします.

400N

MARTH 自動ジャッジ 難易度:
5月前

10

$1$ 以上 $461$ 以下の整数からなる数列 $(a_1,a_2,\cdots,a_N)$ は以下を満たします.

  • $a_1=309,a_N=461$.
  • $a_n\neq 461\quad (n=2,3,\dots,N-1)$
  • $n=2,3,\dots,N$ について, $(a_1+a_{n-1})a_n \equiv (1+a_1a_{n-1})\pmod{461}$

このとき, $N$ の値は一意に定まるので, $N$ の値を求めてください.
ただし, $461$ は素数であり, $2^n\equiv 1\pmod{461}$ をみたす正整数 $n$ の最小値は, $460$ であり, $3a_1\equiv 5\pmod{461}$ です.

開催したコンテスト

コンテスト名 日程 作成者
Nyannyan math contest 001 (NMC001) 2023-11-02 21:00
〜 2023-11-02 22:00
nmoon nmoon hiro1729 hiro1729 MARTH MARTH

参加したコンテスト

順位 コンテスト名 得点 終了日時 作成者
14 第3回まそらた杯 0 2024年7月6日21:00 masorata masorata
4 MCA the 1st 25 2024年2月18日12:00 masorata masorata
15 ΠMC002 400 2023年10月27日23:20 wasab1 wasab1 pomodor_ap pomodor_ap JoeFight JoeFight conan_kun conan_kun