$\quad$三角形 $ABC$ において,内心を $I$ ,角 $A$ 内の傍心を $I_A$ ,外心を $O$ とすると,直線 $II_A$ と直線 $IO$ は垂直に交わった.線分 $BC$ の中点を $M$ ,線分 $II_A$ と線分 $BC$ の交点を $K$ とし,三角形 $MKI_A$ の重心を $G$ とすると, $$KM=1,KG=3$$が成立した.このとき,線分 $BC$ の長さを求めよ.
求める値の二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac ab$と表せるので, $a+b$ を半角数字で解答してください.
$\quad$鋭角三角形 $ABC$ において, $B$ を通り直線 $AC$ に平行な直線上に点 $P$ を, $C$ を通り直線 $AB$ に平行な直線上に点 $Q$ をそれぞれとると, $A,P,Q$ はすべて直線 $BC$ に関して同じ方にあり, $\angle APB=\angle AQC$ が成立した.また,三角形 $PAB$ の外接円と三角形 $QAC$ の外接円が再び交わる点を $X$ とし,直線 $PQ$ と直線 $BX,CX$ の交点をそれぞれ $R,S$ とすると,
$$\cos\angle BXC=\frac 15,CX-BX=5,XR:XS=5:3$$が成立した.さらに,線分 $BC$ の中点を $M$ ,直線 $AX$ と三角形 $PXQ$ の外接円が再び交わる点を $T$ とし,三角形 $TPQ$ の内心を $I$ とすると,直線 $AX$ と直線 $MI$ は平行であった.このとき,線分 $XI$ の長さを求めよ.
求める値の二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac ab$と表せるので, $a+b$ を半角数字で解答してください.
外接円の直径が$5$,$AB:AD=5:7$の内接四角形$ABCD$において,$\triangle ABC$の内心,$B$傍心をそれぞれ$I_1$,$I_B$とし,$\triangle ADC$の内心,$D$傍心をそれぞれ$I_2$,$I_D$とすると,$I_1$,$I_2$,$I_B$,$I_D$は同一円周上にあり,$I_1I_B\cdot I_2I_D=40$を満たした.$AC$の中点を$M$としたとき,$BM+DM$を求めよ.
求める値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表されるので,$a+b$を半角数字で解答してください.
$\angle B=90^{\circ}$なる直角三角形$ABC$において,$AC$の中点を$M$とすると,$BC$上(端点を除く)に$AB=MP=MQ$なる異なる$2$点$P$,$Q$をとることができ,$B$,$P$,$Q$,$C$はこの順にあった.また,直線$MQ$について$B$と対称な点を$X$とすると,$AX=11$,$PX=18$を満たした.このとき,$BC$の長さの$2$乗を求めよ.
求める値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a+b$を半角数字で解答してください.
$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。
半角数字で解答してください。
$\triangle ABC$において$AC$,$AB$の中点をそれぞれ$M$,$N$とし, 線分$BM$,$CN$上(端点を除く)にそれぞれ点$D$,$E$をとります. 直線$AD$,$AE$と線分$BC$の交点をそれぞれ$P$,$Q$としたとき,$$\frac{AP・PD}{PB}=MN-PC$$$$\frac{AQ・QE}{QC}=MN-QB$$が成立しました. $∠ADB=101°$,$∠BEN=62°$,$∠DCB=41°$のとき, $∠AED$の角度を度数法で解答してください.
半角数字で入力してください.
縦$2$マス、横$7$マスの$14$マスそれぞれに$1$〜$7$の整数のいずれかが$1$つ書かれています。以下の条件を満たす数字の書き方は何通りあるか答えてください。ただし、$N_{a,b}$で上から$a$マス目、左から$b$マス目のマスに書かれた数を表します。
・$1≦i≦7$の任意の整数$i$において、
$N_{1,i}≡N_{2,i} (mod\:3)$ かつ
$N_{1,i}≢N_{2,i} (mod\:2)$
・$1≦j≦2$、$1≦k≦6$の任意の整数$j,k$において、
$N_{j,k}≢N_{j,k+1} (mod\:3)$ かつ
$N_{j,k}≢N_{j,k+1} (mod\:2)$
半角数字で入力してください。