Yuu_0909

Yuu_0909

Twitter ID: @Yu_y__uyu
ヤァ
ヤァ

2025問題

Yuu_0909 自動ジャッジ 難易度:
2月前

16

問題文

$2025^{2025}$の正の約数のうち、7で割ると1余るものの個数を求めよ。

解答形式

答えは整数なので、半角数字で答えてください。


問題文

一辺の長さが1である正方形を $n$ 個、頂点が合うように辺同士でつなげてできる図形を $n$-オミノ とする。ただし、$n=1$ の場合は1つの正方形である。また、$n$-オミノが多角形をなすとき($n$-オミノで囲まれた領域が存在しないとき)、これを $n$-オミノ多角形 とする。

$\rm{S_n}$が$n$-オミノ多角形であるとき、$\rm{S_n}$の辺の数が2024となるような $n$ の最小値を求めよ。

解答形式

答えは整数となるので、半角で入力してください。


問題文

△ABC とその外接円 O があり、OA = 3、AB = 4 である。半直線 AO と線分 BC が交わるように点 C をとり、その交点を D とする。BD : DC = 2 : 1 となるときの OD の長さを全て求めなさい。ただし、点 C は弧 AB 上にないものとする。

解答形式

答えはある整数 $a, b, c$ を用いて$$\rm{OD} = \frac{b \pm \sqrt{c}}{a}$$と表せるので、一行目に $a$、二行目に $b$、三行目に $c$ を半角で入力してください。

複素数の絶対値

Yuu_0909 自動ジャッジ 難易度:
3月前

3

問題文

複素数 $z$ について、$$| z^2 - 5z + 6 | = 2$$が成り立つ。この時の $|z|$ の最小値と最大値を求めよ。

解答形式

解答は整数となるので、半角で、一行目に最小値を、二行目に最大値を入力してください。