kiwiazarashi

kiwiazarashi

Twitter ID: @@taichiyan174700
中2 OMCやってます 作問たのしい
中2 OMCやってます 作問たのしい

統計情報

フォロー数6
フォロワー数5
投稿した問題数3
コンテスト開催数0
コンテスト参加数0
解答された数29
いいねされた数1
解答した問題数15
正解した問題数11
正解率73.3%

人気問題

2025記念問題

kiwiazarashi 自動ジャッジ 難易度:
3月前

20

問題文

素因数分解したときの素因数の合計が22になるものを「キウイナンバー」とします。(例えば2025は素因数分解すると3×3×3×3×5×5になり、これを合計すると22になるので2025はキウイナンバーです。)
最大のキウイナンバーを求めてください。

解答形式

答えの数字をそのまま入力すればOKです。

簡単めな幾何問題

kiwiazarashi 自動ジャッジ 難易度:
6月前

5

問題文

緑色の正方形ABCDと、紫色の正方形EFGHがあり、それぞれ1辺6cmである。点Aと点E、点Bと点F、点Cと点G、点Dと点Hがそれぞれ重なるように正方形を重ねる。(緑色の正方形が上にある。) そして辺ABを3等分する点をとり、点Aに近い方を点Iとする。また辺EFを3等分する点をとり、点Fに近い方を点Jとする。
今、緑色の正方形のみを重心を中心として回転させ、点Iと点Jが重なったところで回転を止めた。このとき、上から見える紫色の部分の面積の合計はいくらか。

解答形式

答えは◯cm^2となるので、◯の部分のみを答えてください。

余談

2年前(小6)のときにルービックキューブを触りながら作った問題です。問題文が長ったらしくて読みにくいと思いますがご了承ください。ちなみにこの問題は当時scratchにも投稿しました。

10日前

4

問題文

四角形$ABCD$があり、次の条件を満たします。

$∠A=∠B=∠C, ∠D=135°, BC=4\sqrt{6}, CD=8$

この四角形の面積$S$は$a + \sqrt{b}$の形で表されるので、$a + b$を解答してください。

解答形式

半角数字で答えをそのまま入力。

余談

問題に不備等あればtwitterのDMなどで気軽にお願いします。
Tex初めて使いました。
問題思いつくのは簡単なんですけど、解説は未だに上手く書けませんね…

新着問題

10日前

4

問題文

四角形$ABCD$があり、次の条件を満たします。

$∠A=∠B=∠C, ∠D=135°, BC=4\sqrt{6}, CD=8$

この四角形の面積$S$は$a + \sqrt{b}$の形で表されるので、$a + b$を解答してください。

解答形式

半角数字で答えをそのまま入力。

余談

問題に不備等あればtwitterのDMなどで気軽にお願いします。
Tex初めて使いました。
問題思いつくのは簡単なんですけど、解説は未だに上手く書けませんね…

2025記念問題

kiwiazarashi 自動ジャッジ 難易度:
3月前

20

問題文

素因数分解したときの素因数の合計が22になるものを「キウイナンバー」とします。(例えば2025は素因数分解すると3×3×3×3×5×5になり、これを合計すると22になるので2025はキウイナンバーです。)
最大のキウイナンバーを求めてください。

解答形式

答えの数字をそのまま入力すればOKです。

簡単めな幾何問題

kiwiazarashi 自動ジャッジ 難易度:
6月前

5

問題文

緑色の正方形ABCDと、紫色の正方形EFGHがあり、それぞれ1辺6cmである。点Aと点E、点Bと点F、点Cと点G、点Dと点Hがそれぞれ重なるように正方形を重ねる。(緑色の正方形が上にある。) そして辺ABを3等分する点をとり、点Aに近い方を点Iとする。また辺EFを3等分する点をとり、点Fに近い方を点Jとする。
今、緑色の正方形のみを重心を中心として回転させ、点Iと点Jが重なったところで回転を止めた。このとき、上から見える紫色の部分の面積の合計はいくらか。

解答形式

答えは◯cm^2となるので、◯の部分のみを答えてください。

余談

2年前(小6)のときにルービックキューブを触りながら作った問題です。問題文が長ったらしくて読みにくいと思いますがご了承ください。ちなみにこの問題は当時scratchにも投稿しました。

開催したコンテスト

まだ開催したコンテストがありません

参加したコンテスト

まだ参加したコンテストがありません