金木犀の自作問題(2022/02/27)

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2022年2月27日1:19 正解数: 11 / 解答数: 11 (正答率: 100%) ギブアップ数: 0

解説

$\dfrac{4}{2+4}$ は角の二等分線の性質による。解答は $8+3=\bf{11}$。


おすすめ問題

この問題を解いた人はこんな問題も解いています

求長問題22

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

長方形に内接する半円があります。青い三角形の面積が9のとき、赤い線分の長さを求めてください。

解答形式

半角数字で解答してください。

2年前

7

問題文

一辺が $8$ である正三角形 $ABC$ の内接円と $AB,BC,CA$ との接点を $K,L,M$ とします。$\triangle ABC$ の外接円上の点 $P$ について、$PK^2+PL^2+PM^2$ の値を求めてください。

解答形式

半角数字で解答してください。

2年前

11

問題文

半円と直角三角形を組み合わせた以下の図について、青で示した線分と赤で示した線分の長さの比を求めてください。

解答形式

$\left(\dfrac{x}{y}\right)^2$ の値を半角数字で解答してください。

求長問題24

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

半円と、その中心を通る円が図のように配置されています。赤、青で示した弧の長さがそれぞれ3, 4のとき、緑で示した弧の長さを求めてください。

解答形式

半角数字で解答してください。

2年前

11

問題文

図の条件の下で、青で示した三角形の面積を求めてください。

解答形式

解答は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。

2年前

8

問題文

図の条件の下で、赤で示した線分の長さ $x$ を求めてください。

解答形式

$x^2$ の値を半角数字で解答してください。

2年前

7

問題文

図の条件の下で、赤で示した線分の長さを求めてください。

解答形式

半角数字で解答してください。

2年前

7

問題文

図の条件の下で、青で示した線分の長さを求めてください。

解答形式

半角数字で解答してください。

求角問題16

Kinmokusei 自動ジャッジ 難易度:
2年前

8

問題文

正六角形内に、図のように円を配置しました。青で示した角の大きさを求めてください。

解答形式

$\angle x=a°$ です。$a$ に当てはまる0以上180未満の数値を半角で回答してください。

求面積問題30

Kinmokusei 自動ジャッジ 難易度:
2年前

10

問題文

正三角形・長方形・半円を組み合わせた以下の図形について、図中緑の線分の長さが6のとき、図形全体の面積を求めてください。

解答形式

半角数字で解答してください。

求角問題17

Kinmokusei 自動ジャッジ 難易度:
2年前

9

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

解答を弧度法で表すと、$x=\dfrac{a}{b}\pi$ です。$a+b$を解答してください。
ただし、$a,b$ は互いに素な正整数で、$0\leq \dfrac{a}{b} \lt 1$ を満たします。

求長問題29

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

図の条件において、$x$ の長さを求めてください。
なお、図中オレンジの点は直角三角形の内心です。

解答形式

解答は $x=\sqrt a$ となります。$a$ を半角数字で解答してください。