金木犀の自作問題(2022/06/19)

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2022年6月19日2:11 正解数: 3 / 解答数: 3 (正答率: 100%) ギブアップ数: 0

問題文

一辺が $8$ である正三角形 $ABC$ の内接円と $AB,BC,CA$ との接点を $K,L,M$ とします。$\triangle ABC$ の外接円上の点 $P$ について、$PK^2+PL^2+PM^2$ の値を求めてください。

解答形式

半角数字で解答してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

求長問題16

Kinmokusei 自動ジャッジ 難易度:
20月前

4

問題文

2021.3.21 22:28 問題タイトルを修正しました。(解答に影響はありません)
正三角形の内接円と外接円があります。図のように線分の長さが与えられたとき、正三角形の一辺の長さを求めてください。

解答形式

答えは$\fbox ア\sqrt{\fbox イ}$となります。文字列 アイ を解答してください。
ただし、$\fbox ア,\fbox イ$には一桁の自然数が入ります。また、根号の中身が平方数の倍数にならないように解答してください。

4月前

3

問題文

図の条件の下で、赤で示した線分の長さ $x$ を求めてください。

解答形式

$x^2$ の値を半角数字で解答してください。

5月前

4

問題文

図の条件の下で、緑の線分の長さ $x$ を求めてください。

解答形式

$x^2$ の値を半角数字で解答してください。

3月前

5

問題文

図の条件の下で、ピンクで示した線分の長さを求めてください。

解答形式

互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください。

2月前

7

問題文

図の条件の下で、青で示した線分の長さ $x$ を求めてください。

解答形式

互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を半角数字で解答してください。

7月前

5

問題文

図の条件の下で,青で示した線分の長さ $x$ を求めてください.

解答形式

$x^2$ は正整数となるので,これを解答してください.

6月前

2

問題文

$\angle C=90°$ である $\triangle ABC$ において, $C$ から $AB$ へおろした垂線の足を $P$ , $\angle C$ の二等分線と $AB$ との交点を $Q$ とします. $AQ=3,BQ=4$ のとき, $PQ$ の長さを求めてください.
(下図には $CP⊥AB$ であることが書かれていませんので, 注意してください. )

解答形式

互いに素な正整数 $a,b$ によって $PQ=\dfrac{a}{b}$ と表せるので, $a+b$ の値を半角数字で解答してください.

8月前

2

問題文

2つの正六角形を組み合わせた、図のような七角形があります。青で示した部分の面積が49、赤で示した部分の面積が28のとき、緑で示した三角形の面積を求めてください。

解答形式

半角数字で解答してください。

4月前

2

問題文

図の条件の下で、線分 $CG$ の長さを求めてください。
※図中の各線分の長さの比は正確とは限りません。

解答形式

互いに素な正整数 $a,b$ によって $CG=\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。

二等辺三角形と円

tb_lb 自動ジャッジ 難易度:
5月前

3

【補助線主体の図形問題 #061】
 今週の図形問題はぐっと取り組みやすい問題を用意しました。補助線を引くとどこかで見た構図が現れるはずです。今まで横眼で眺めていただけの人もぜひ挑戦してみてください!

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$  $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
 入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

20月前

8

【補助線主体の図形問題 #007】
 今回は図形問題の王道から円がらみの求角問題を用意しました。手慣れている方なら脳内で処理できるくらいの計算量です。どうぞ円と角度の世界を堪能してください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12^{\circ}$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。

5月前

2

問題文

図の条件の下で、$x$ で示した角の大きさを求めてください。
ただし、外側の三角形は鋭角三角形であるとします。

解答形式

$x=a$ 度です $(0<a<30)$ 。$a$ の値を半角数字で解答してください。