金木犀の自作問題(2022/06/19)

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2022年6月19日2:11 正解数: 3 / 解答数: 3 (正答率: 100%) ギブアップ数: 0

解説

中線定理の拡張として $3$ 点 $A,B,C$ とその重心 $G$ および任意の点 $P$ に対して
$$AP^2+BP^2+CP^2=AG^2+BG^2+CG^2+3GP^2$$が成り立つ(解説画像 $3$ 行目)。なお、一般に空間内の $n$ 点について、同様に拡張可能である。


おすすめ問題

この問題を解いた人はこんな問題も解いています

16月前

3

問題文

図の条件の下で、赤で示した線分の長さ $x$ を求めてください。

解答形式

$x^2$ の値を半角数字で解答してください。

17月前

6

問題文

図の条件の下で、緑の線分の長さ $x$ を求めてください。

解答形式

$x^2$ の値を半角数字で解答してください。

15月前

7

問題文

図の条件の下で、青で示した三角形の面積を求めてください。

解答形式

解答は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。

2年前

11

【補助線主体の図形問題 #007】
 今回は図形問題の王道から円がらみの求角問題を用意しました。手慣れている方なら脳内で処理できるくらいの計算量です。どうぞ円と角度の世界を堪能してください。

解答形式

${
\renewcommand\deg{{}^{\circ}}
\def\myang#1{\angle \mathrm{#1}}
\def\myarc#1#2{\stackrel{\style{transform:matrix(#1,0,0,1.5,0,2)}{\frown}}{\mathrm{#2}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針をぼんやりと
  2. ある定理の紹介
  3. ヒント1・2の内容をやや具体的に
12月前

3

【補助線主体の図形問題 #078】
 今週来週と2週続けて内心と傍心をテーマにした問題をお送りします。補助線が活躍するのはいつも通りです。若干計算量が多いので、紙とペンを用意した方が安心できるかもしれません。暗算で解いてやるという初等幾何猛者の方はどうぞ暗算で解いてやってください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

京大オマージュ

Gauss 採点者ジャッジ 難易度:
2年前

2

問題文

$\sin1°$ は有理数か。

解答形式

証明を簡潔に記述してください。

20月前

2

問題文

2つの正六角形を組み合わせた、図のような七角形があります。青で示した部分の面積が49、赤で示した部分の面積が28のとき、緑で示した三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求長問題16

Kinmokusei 自動ジャッジ 難易度:
2年前

6

問題文

2021.3.21 22:28 問題タイトルを修正しました。(解答に影響はありません)
正三角形の内接円と外接円があります。図のように線分の長さが与えられたとき、正三角形の一辺の長さを求めてください。

解答形式

答えは$\fbox ア\sqrt{\fbox イ}$となります。文字列 アイ を解答してください。
ただし、$\fbox ア,\fbox イ$には一桁の自然数が入ります。また、根号の中身が平方数の倍数にならないように解答してください。

求長問題22

Kinmokusei 自動ジャッジ 難易度:
2年前

6

問題文

長方形に内接する半円があります。青い三角形の面積が9のとき、赤い線分の長さを求めてください。

解答形式

半角数字で解答してください。

18月前

6

問題文

図の条件の下で,青で示した線分の長さを求めてください.

※頂角 $30°$ の合同な二等辺三角形

解答形式

$x^2$ の値を半角数字で解答してください.

19月前

9

問題文

図の条件の下で,青で示した線分の長さ $x$ を求めてください.

解答形式

$x^2$ は正整数となるので,これを解答してください.

21月前

7

問題文

図の条件の下で、水色で示した三角形の面積を求めてください。

解答形式

求める面積 $x$ は互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので、$a+b$ を解答してください。