図の条件の下で、赤で示した線分の長さ $x$ を求めてください。
$x^2$ の値を半角数字で解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
一辺が $8$ である正三角形 $ABC$ の内接円と $AB,BC,CA$ との接点を $K,L,M$ とします。$\triangle ABC$ の外接円上の点 $P$ について、$PK^2+PL^2+PM^2$ の値を求めてください。
半角数字で解答してください。
図の条件の下で、青で示した三角形の面積を求めてください。
解答は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。
2つの正六角形を組み合わせた、図のような七角形があります。青で示した部分の面積が49、赤で示した部分の面積が28のとき、緑で示した三角形の面積を求めてください。
$\sin1°$ は有理数か。
証明を簡潔に記述してください。
【補助線主体の図形問題 #007】 今回は図形問題の王道から円がらみの求角問題を用意しました。手慣れている方なら脳内で処理できるくらいの計算量です。どうぞ円と角度の世界を堪能してください。
${ \renewcommand\deg{{}^{\circ}} \def\myang#1{\angle \mathrm{#1}} \def\myarc#1#2{\stackrel{\style{transform:matrix(#1,0,0,1.5,0,2)}{\frown}}{\mathrm{#2}}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。 (例) $12\deg$ → $\color{blue}{12.00}$ $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$ 入力を一意に定めるための処置です。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #078】 今週来週と2週続けて内心と傍心をテーマにした問題をお送りします。補助線が活躍するのはいつも通りです。若干計算量が多いので、紙とペンを用意した方が安心できるかもしれません。暗算で解いてやるという初等幾何猛者の方はどうぞ暗算で解いてやってください!
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
2021.3.21 22:28 問題タイトルを修正しました。(解答に影響はありません) 正三角形の内接円と外接円があります。図のように線分の長さが与えられたとき、正三角形の一辺の長さを求めてください。
答えは$\fbox ア\sqrt{\fbox イ}$となります。文字列 アイ を解答してください。 ただし、$\fbox ア,\fbox イ$には一桁の自然数が入ります。また、根号の中身が平方数の倍数にならないように解答してください。
図の条件の下で,青で示した線分の長さ $x$ を求めてください.
$x^2$ は正整数となるので,これを解答してください.
長方形に内接する半円があります。青い三角形の面積が9のとき、赤い線分の長さを求めてください。
図の条件の下で、緑の線分の長さ $x$ を求めてください。
図の条件の下で、青で示した線分の長さ $x$ を求めてください。
互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を半角数字で解答してください。
図のように線分の長さが与えられたとき、青で示した線分の長さを求めてください。
青い線分の長さを$x$とすると$x^2$は整数となるので、$x^2$を半角数字で解答してください。