金木犀の自作問題(2022/10/02)

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2022年10月2日2:51 正解数: 6 / 解答数: 7 (正答率: 85.7%) ギブアップ数: 0

全 7 件

回答日時 問題 解答者 結果
2022年10月15日12:19 金木犀の自作問題(2022/10/02) ko02hei04
正解
2022年10月15日11:15 金木犀の自作問題(2022/10/02) ryno
正解
2022年10月15日11:14 金木犀の自作問題(2022/10/02) ryno
正解
2022年10月15日11:14 金木犀の自作問題(2022/10/02) ryno
不正解
2022年10月10日11:18 金木犀の自作問題(2022/10/02) ゲスト
正解
2022年10月4日14:26 金木犀の自作問題(2022/10/02) naoperc
正解
2022年10月2日12:28 金木犀の自作問題(2022/10/02) hkd585
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

4月前

3

問題文

図の条件の下で、赤で示した線分の長さ $x$ を求めてください。

解答形式

$x^2$ の値を半角数字で解答してください。

5月前

4

問題文

図の条件の下で、緑の線分の長さ $x$ を求めてください。

解答形式

$x^2$ の値を半角数字で解答してください。

5月前

3

問題文

一辺が $8$ である正三角形 $ABC$ の内接円と $AB,BC,CA$ との接点を $K,L,M$ とします。$\triangle ABC$ の外接円上の点 $P$ について、$PK^2+PL^2+PM^2$ の値を求めてください。

解答形式

半角数字で解答してください。

求長問題16

Kinmokusei 自動ジャッジ 難易度:
20月前

4

問題文

2021.3.21 22:28 問題タイトルを修正しました。(解答に影響はありません)
正三角形の内接円と外接円があります。図のように線分の長さが与えられたとき、正三角形の一辺の長さを求めてください。

解答形式

答えは$\fbox ア\sqrt{\fbox イ}$となります。文字列 アイ を解答してください。
ただし、$\fbox ア,\fbox イ$には一桁の自然数が入ります。また、根号の中身が平方数の倍数にならないように解答してください。

2月前

5

問題文

図の条件の下で、ピンクで示した線分の長さを求めてください。

解答形式

互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください。

7月前

5

問題文

図の条件の下で,青で示した線分の長さ $x$ を求めてください.

解答形式

$x^2$ は正整数となるので,これを解答してください.

求長問題17

Kinmokusei 自動ジャッジ 難易度:
19月前

6

問題文

図のように線分の長さが与えられたとき、青で示した線分の長さを求めてください。

解答形式

青い線分の長さを$x$とすると$x^2$は整数となるので、$x^2$を半角数字で解答してください。

求長問題22

Kinmokusei 自動ジャッジ 難易度:
17月前

6

問題文

長方形に内接する半円があります。青い三角形の面積が9のとき、赤い線分の長さを求めてください。

解答形式

半角数字で解答してください。

9月前

6

問題文

図の条件の下で、水色で示した三角形の面積を求めてください。

解答形式

求める面積 $x$ は互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので、$a+b$ を解答してください。

求長問題30

Kinmokusei 自動ジャッジ 難易度:
12月前

9

問題文

図の条件の下で $x$ の長さを求めてください。
解答形式に注意してください。

解答形式

$x^2$ の値を半角数字で解答してください。

6月前

6

問題文

図の条件の下で,青で示した線分の長さを求めてください.

※頂角 $30°$ の合同な二等辺三角形

解答形式

$x^2$ の値を半角数字で解答してください.

20月前

8

【補助線主体の図形問題 #007】
 今回は図形問題の王道から円がらみの求角問題を用意しました。手慣れている方なら脳内で処理できるくらいの計算量です。どうぞ円と角度の世界を堪能してください。

解答形式

${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12^{\circ}$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。