図の条件の下で、青で示した線分の長さ $x$ を求めてください。 なお、緑で示した2つの角の大きさは等しく、ピンクで示した点は三角形の重心です。
半角数字で解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
直角二等辺三角形と、その頂角を通る円が図のように配置されています。青で示した線分の長さを求めてください。
図の条件の下で、青で示した角の大きさを求めてください。
$x=a$ 度 です。$a$ に当てはまる、0以上180未満の値を半角数字で解答してください。
図のように正五角形と正三角形が配置されています。緑の$x$で示した角度を求めてください。 なお、赤で示した2つの線分は長さが等しく、青で示した角は直角です。
度数法で、単位を付けずに0以上180未満の数を半角数字で解答してください。
正方形と正三角形を組み合わせた以下の図において、青で示した角の大きさを求めてください。
半角数字で解答してください。 解答は度数法で、単位を付けずに0以上180未満の整数として解答してください。
半円弧を組み合わせた以下の図について、緑で示した部分の面積を求めてください。 大きい半円の直径は6、小さい半円弧の直径は3であり、大きい半円の弧は灰色の点によって6等分されています。
解答は $\dfrac{a}{b}\pi$ となるので、$a+b$ を解答してください。 ただし、$a,b$ は互いに素な正整数です。
図の条件の下で、青で示した線分の長さを求めてください。
図の条件の下で、赤で示した線分の長さを求めてください。
正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。
解答を弧度法で表すと、$x=\dfrac{a}{b}\pi$ です。$a+b$を解答してください。 ただし、$a,b$ は互いに素な正整数で、$0\leq \dfrac{a}{b} \lt 1$ を満たします。
図の条件の下で、青で示した線分の長さ $x$ を求めてください。 なお、図中の赤点(centroid)は三角形の重心です。
$x^2$ は正整数になるので、この値を解答してください。
図において、青で示した部分の面積と、赤で示した部分の面積の差が $63$ のとき、四角形 $ABCD$ の面積を求めてください。
扇形内部に図のように線を引きました。青い三角形の面積が12のとき、緑の三角形の面積を求めてください。