求角問題7

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2021年2月28日9:17 正解数: 5 / 解答数: 7 (正答率: 71.4%) ギブアップ数: 0

全 7 件

回答日時 問題 解答者 結果
2023年11月15日15:36 求角問題7 naoperc
正解
2023年10月17日11:51 求角問題7 miq
正解
2022年11月8日11:29 求角問題7 ゲスト
不正解
2022年5月24日0:19 求角問題7 ゲスト
不正解
2021年10月19日22:43 求角問題7 ゲスト
正解
2021年6月9日1:59 求角問題7 mochimochi
正解
2021年3月5日14:59 求角問題7 tima_C
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

20月前

4

問題文

図の条件の下で、青で示した線分の長さ $x$ を求めてください。
なお、緑で示した2つの角の大きさは等しく、ピンクで示した点は三角形の重心です。

解答形式

半角数字で解答してください。

内接球の半径

ryno 自動ジャッジ 難易度:
13月前

4

問題文

3辺がそれぞれ3,√2,√10である不等辺三角形から成る等面四面体𝑋が存在する。三角形の面積を𝑝、𝑋に内接する球体の半径を𝑞とするとき、𝑞を𝑝を用いて表せ。

解答形式

𝑞=√a/b𝑝となります。
a+bを半角で答えてください

求長問題13

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。

解答形式

半角数字で解答してください。

求面積問題16

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。

解答形式

面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。

例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$

2曲線で囲まれる部分の面積

zyogamaya 自動ジャッジ 難易度:
3年前

7

問題文

2曲線
$
\begin{cases}
y=2x^3+10x^2+12x+7 \newline
y=x^2+5x+13
\end{cases}
$
で囲まれる部分の面積$S$を求めよ。

解答形式

答えは
$\displaystyle\frac{[abc]}{[de]}$
という形になります。($a,b,c,d,e$は1桁の自然数)
センター、共通テスト方式で答えてください。
例:
$S=\displaystyle\frac{765}{13}$のときは「76513」と入力する。

求面積問題24

Kinmokusei 自動ジャッジ 難易度:
2年前

10

問題文

扇形内部に図のように線を引きました。青い三角形の面積が12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

2元7次不定方程式

zyogamaya 自動ジャッジ 難易度:
3年前

10

問題文

$x,y$を整数とする。不定方程式$x^7+17y=3$の解$x$をすべて求めよ。

解答形式

答えは、$n$を整数とし、
$x=[ab]n+[cd]$
($a,b,c,d$は一桁の自然数)
という形をしています。$a,b,c,d$の値を求め、$abcd$(4桁の自然数)を入力してください。

求面積問題14

Kinmokusei 自動ジャッジ 難易度:
2年前

10

問題文

周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。

解答形式

半角数字で解答してください。

二重根号

zyogamaya 自動ジャッジ 難易度:
2年前

10

問題文

実数$x$の方程式$3\sqrt{x+1-4\sqrt{x-3}}=x-1$を解け。

解答形式

半角数字、またはTexで解答してください。$x=$は書かなくて良いです。

求長問題6

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

図のように配置された図形で、半円の半径が$5$、赤、青、緑の線分の長さがそれぞれ$3,X,Y$のとき、$X^2+Y^2$の値を求めてください。

解答形式

半角数字で解答してください。

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

求角問題4

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

正六角形2つが図のように配置されています。赤い線分と青い線分の長さの比が1:4であるとき、緑で示した角Yの角度を求めてください。
ただし、図中"center"で示した点は正六角形の外心です。

解答形式

0~360までの半角数字で、「°」や「度」をつけずに解答してください。