求面積問題24

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2021年7月31日23:14 正解数: 9 / 解答数: 10 (正答率: 90%) ギブアップ数: 0

問題文

扇形内部に図のように線を引きました。青い三角形の面積が12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

求長問題26

Kinmokusei 自動ジャッジ 難易度:
2年前

6

問題文

直角二等辺三角形と、その頂角を通る円が図のように配置されています。青で示した線分の長さを求めてください。

解答形式

半角数字で解答してください。

自作2

mahiro 自動ジャッジ 難易度:
12日前

9

問題文

$${\displaystyle6\cdot\prod_{q=3}^{2023}\log_{q-1}q^{q+1}}$$は $1$ ではない非負整数 $k,l,m,n$ を用いて ${k! \cdot \log_lm^n}$と示されるので、$klmn$ の最小値を求めて下さい。

解答形式

半角数字で入力して下さい

20月前

4

問題文

図の条件の下で、青で示した線分の長さ $x$ を求めてください。
なお、緑で示した2つの角の大きさは等しく、ピンクで示した点は三角形の重心です。

解答形式

半角数字で解答してください。

求角問題7

Kinmokusei 自動ジャッジ 難易度:
2年前

7

問題文

図のように正五角形と正三角形が配置されています。緑の$x$で示した角度を求めてください。
なお、赤で示した2つの線分は長さが等しく、青で示した角は直角です。

解答形式

度数法で、単位を付けずに0以上180未満の数を半角数字で解答してください。

4月前

14

【補助線主体の図形問題 #109】
 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #028】
 今回は素朴な面積関係の問題を用意しました。素朴なだけに多様な手法が通用します。力技解法もあれば、補助線による暗算解法も仕込んであります。思い思いの手法で挑戦してみてください!

※2021年9月11日より難易度評価を見直して、総じて★+1しました。この問題の現難易度評価★2.5は、旧評価の★1.5にあたります。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

BMC002-E

MARTH 自動ジャッジ 難易度:
23日前

9

直方体 $ABCD-EFGH$があり, $AB=\sqrt{2},AD=2023\sqrt{2},AE=2024\sqrt{2}$ です. 三角形 $BDE$ の面積を求めてください.

最大・最小問題

zyogamaya 自動ジャッジ 難易度:
2年前

14

問題文

$a,b,c$がいずれも正の実数であり、$a+b+c=5,abc=1$が成り立つとき、$ab+bc+ca$の最小値を求めよ。

解答形式

答えは既約分数になります。/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7


【補助線主体の図形問題 #100】
 たまに休みつつも、ほぼ毎週出題を続け、100問目に到達しました! いつも解いてくださっている方も、ふらりとやって来て解いてくださる方も、ありがとうございます!! これからも地道に出題を続けて参ります。今後ともよろしくお願いします。
 今回は100問目記念として特別に2問同時に出題します。次の101問目 https://pororocca.com/problem/1252/ はこの100問目と比べて単純に正方形の数が増えています。こちらを正解したうえで次の問題に進むのをお勧めします。
 なお、正方形$\mathrm{ABCD}$の1辺が容易に求まりますが、それは使わずに$\square \mathrm{ABCD} : \square \mathrm{DEFG}$を求めるのを目標にすると計算量が減ります。参考にしてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

直角三角形と垂心

tb_lb 自動ジャッジ 難易度:
6月前

11

【補助線主体の図形問題 #098】
 今週の図形問題の素材は垂心です。いろいろなところに現れる直角をうまいこと処してください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

2年前

25

【補助線主体の図形問題 #002】
 先日より補助線主体の初等幾何の問題を投稿しています。
 今日は補助線問題の花形である求角問題を用意しました。とはいえ、補助線問題としてまだまだ大人しめです。手慣れている方は頭の中だけでの処理に挑戦してみてください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 大雑把な方針
  2. ヒント1の内容をやや具体的に
  3. ヒント2の続き

【補助線主体の図形問題 #048】
 先週は傍心がらみの求長問題をお送りしましたが、今週は内心と外心の両方が登場する求角問題にしてみました。暗算でも十分処理可能な解法も存在しています。五心の織り成す関係をお楽しみください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。