3つの正八角形

tb_lb 自動ジャッジ 難易度: 数学 > 中学数学
2023年11月5日21:25 正解数: 7 / 解答数: 13 (正答率: 53.8%) ギブアップ不可
初等幾何 面積

全 13 件

回答日時 問題 解答者 結果
2023年11月23日15:39 3つの正八角形 nakakun
正解
2023年11月21日9:40 3つの正八角形 ゲスト
正解
2023年11月21日9:31 3つの正八角形 ゲスト
不正解
2023年11月21日9:18 3つの正八角形 ゲスト
不正解
2023年11月16日12:06 3つの正八角形 ゲスト
正解
2023年11月6日16:53 3つの正八角形 naoperc
正解
2023年11月6日9:37 3つの正八角形 ゲスト
正解
2023年11月6日9:32 3つの正八角形 ゲスト
不正解
2023年11月6日9:25 3つの正八角形 ゲスト
不正解
2023年11月6日1:48 3つの正八角形 natsuneko
正解
2023年11月5日22:37 3つの正八角形 nmoon
正解
2023年11月5日22:28 3つの正八角形 nmoon
不正解
2023年11月5日22:19 3つの正八角形 nmoon
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

長方形と2つの内接円

tb_lb 自動ジャッジ 難易度:
16月前

9

【補助線主体の図形問題 #114】
 今週の図形問題です。うまいこと補助線を引けば暗算で処理できるようになっています。初等幾何の皆さんは頭の中だけで処理し切る暗算解法に挑戦してみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

16月前

5

【補助線主体の図形問題 #116】
 今週の図形問題です。今回は求角問題を用意しました。一瞬ギョッとするかもしれませんが、おなじみの形が埋め込まれています。腕に覚えのある方は暗算でどうぞ!

解答形式

${
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

17月前

8

【補助線主体の図形問題 #111】
 今週の図形問題です。図形問題通算111問目とレピュニット(1のゾロ目)になったので、それにかこつけて正十一角形の問題をお送りします。今回は2ヶ所の角度の和を求める問題にしてみました。補助線を頼りに解き明かしてください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

参考問題

${}$ 正十一角形を素材とした問題は過去にも出題しています。ぜひ併せてお楽しみください。
(1)→ https://pororocca.com/problem/919/
(2)→ https://pororocca.com/problem/933/


【補助線主体の図形問題 #106】
 今週の図形問題です。外接円に接線、角の2等分線、垂線と要素がてんこ盛りの問題になりました。これらが出会うとき、どんな性質が生まれるのか、補助線の力を借りてぜひご確認ください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

正方形と内接円

tb_lb 自動ジャッジ 難易度:
16月前

5

【補助線主体の図形問題 #113】
 今週の図形問題は軽めの求積問題にしてみました。勘で答えたくなるかもしれませんが、一旦その欲求は抑えて、ぜひ論証し切ってみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #103】
 今週の図形問題です。今回は鏡映三角形に中点と垂線を組み合わせてみました。これらが出会ったときに何が起こるか、補助線を引きつつぜひお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

四分円と正八角形

tb_lb 自動ジャッジ 難易度:
20月前

6

【補助線主体の図形問題 #097】
 今週の図形問題です。今週は小ネタを詰めたような問題となりました。補助線で見破ってみてください。とはいえ、解法は自由です。お好きな解法でぜひ解いてやってください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

直角三角形と垂心

tb_lb 自動ジャッジ 難易度:
20月前

11

【補助線主体の図形問題 #098】
 今週の図形問題の素材は垂心です。いろいろなところに現れる直角をうまいこと処してください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

18月前

8

【補助線主体の図形問題 #107】
 今週の図形問題です。3連休の中日、ちょっと重めの問題を用意しました。そのかわり(想定解では)計算はわずか、暗算で処理できる分量です。どうかお好きな解法でお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

3年前

8

【補助線主体の図形問題 #035】
 11月に入りました。11月11日に先んじて11だらけの図形問題をお送りします。補助線しだいで処理量は大きく変わりますが、暗算可能な解法も存在します。補助線の威力を存分にお楽しみください!

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

三角形の重心と内心

tb_lb 自動ジャッジ 難易度:
17月前

10

【補助線主体の図形問題 #110】
 今週の図形問題です。このところ五心の活躍が多いですが、今回登場するのは重心と内心。この2点が平行線でつながっています。これらの図形が織りなす性質を楽しんでください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

角の比が1:2:3の三角形

tb_lb 自動ジャッジ 難易度:
15月前

7

【補助線主体の図形問題 #118】
 今週の図形問題です。僕の問題にしては珍しく角の比が表に出た問題となりました。補助線の威力をぜひ感じ取ってください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。