除夜コン2023本選A2

shoko_math 自動ジャッジ 難易度: 数学 > 高校数学
2024年1月1日19:27 正解数: 2 / 解答数: 3 (正答率: 66.7%) ギブアップ数: 1

問題文

正の実数 $a,b,c,d$ が $\Bigg\{\begin{aligned}
a+\dfrac{b}{4}+\dfrac{c}{9}+\dfrac{d}{16}=25 \\
\dfrac{49}{a}+\dfrac{64}{b}+\dfrac{81}{c}+\dfrac{100}{d}=36
\end{aligned}$ の $2$ 式を満たすとき,$d$ の最小値は最大公約数が $1$ の正の整数 $p,q,r$ を用いて $\dfrac{p-\sqrt{q}}{r}$ と表されるので,$p+q+r$ の値を解答してください.

解答形式

半角数字で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

10月前

2

問題文

へこみのない四角形 $ABCD$ の外側に正方形 $ABFE,BCHG,CDJI,DALK$ を描いたところ,$\triangle ALE=16,\triangle BFG=9,\triangle CHI=36$ となりました.このとき,$\triangle DJK$ の面積を求めて下さい.

解答形式

半角数字で解答してください.

除夜コン2023予選N3

shoko_math 自動ジャッジ 難易度:
10月前

4

問題文

$2023$ や $1231$ のように $2$ と $3$ がこの順に連続して表れる $4$ 桁の正の整数(すなわち,$1000$ 以上 $9999$ 以下の整数)の総和を求めてください.

解答形式

半角数字で解答してください.

除夜コン2023問本選C1

shoko_math 自動ジャッジ 難易度:
10月前

3

問題文

お笑いコンビ「さや香」の新山くんは以下のような「見せ算」という演算「$*$」を考案しました.

[見せ算の計算法]
$0$ 以上 $4$ 以下の整数 $a,b$ に対し,$a*b=\Bigg{\{}\begin{aligned}
0\ (a=bのとき) \\
a\ (a>bのとき) \\
b\ (a<bのとき)
\end{aligned}$

とし,$a*b$ を「 $a$ と $b$ の『眼』」と呼ぶ.

$0,1,2,3,4$ を $6$ 個ずつ左右一列に並べて得られる $M=\dfrac{30!}{({6!})^5}$ 通りの数列のうち,左に位置する $2$ 数を消し,その $2$ 数の『眼』をこの数列の左に書き込むという操作を $29$ 回繰り返した時,最後に $3$ が残るような $30$ 個の数の並べ方の総数を $N$ とします.このとき,$\dfrac{N}{M}$ は互いに素な正の整数 $p,q$ を用いて $\dfrac{q}{p}$ と表せるので,$p+q$ の値を解答してください.

解答形式

半角数字で解答してください.

10月前

2

問題文

$AB=20,CD=23,AD=12,BC=31$ を満たす四角形 $ABCD$ について,三角形 $ABD$ の内心を $I_1$ とし,三角形 $BCD$ の内心を $I_2$ とします.
$I_1I_2$ と $BD$ の交点を $X$ とすると $DX=\dfrac{12}{31}$ となったとき,$BX$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.


問題文

下図において,黒線の図形は正十五角形であり,青線の長さは $8$ ,緑線の長さは $6\sqrt{5} - 2 + 2\sqrt{6}\sqrt{5 - \sqrt{5}}$ です.
このとき,赤線の長さは,正整数 $a,b,c,d,e,f,g$ (ただし,$c,d,e,g$ は平方因子を持たない)を用いて $a - b\sqrt{c} + (\sqrt{d} + \sqrt{e})\sqrt{f-\sqrt{g}}$ と表せるので,積 $abcdefg$ の値を解答してください.

解答形式

余分な空白や改行を入れずに,半角数字のみを用いて解答してください.

除夜コン2023予選C4

shoko_math 自動ジャッジ 難易度:
10月前

4

問題文

$8\times8$ のマス目に対し,上から $1$ 行目かつ左から $1$ 列目にあるマス目には黒を表にしてオセロの駒を置き, 残りの $63$ マスには隣り合うマスに置かれた2つの駒が同じ色を表にして置かれないようにオセロの駒を $1$ つずつ置きました.
このとき,「行もしくは列を $1$ つ選び,そこに置かれた $8$ つの駒を全て同時に裏返す」という操作を繰り返したところ,すべての駒が黒を表にして置かれました.
このときの操作回数としてあり得る最小の値を $m$ とおくとき,操作回数が $m$ であって,最終的にすべての駒が黒を表にして置かれるような操作方法の総数を求めてください.

解答形式

半角数字で解答してください.

10月前

3

問題文

円に内接する $8$ 角形 $ABCDEFGH$ が $\angle{A}=121^{\circ},\angle{B}=122^{\circ},\angle{C}=123^{\circ},\angle{D}=124^{\circ},\angle{E}=125^{\circ},\angle{F}=126^{\circ}$ を満たすとき,$\angle{G}$ の大きさを度数法で解答してください.

解答形式

半角数字で解答してください.

整数問題

rt3010 採点者ジャッジ 難易度:
8月前

3

問題文

$x,y,z$は整数とする。また、$p$は素数とする。
$x^{4}+y^{4}+z^{4}-2x^{2}y^{2}-2y^{2}z^{2}-2z^{2}x^{2}-8x^{2}yz-8xy^{2}z-8xyz^{2}=p$となるとき、$p$の最小値を求めよ。また、$p$が最小値をとるとき、$x,y,z$の組を全て求めよ。

解答形式

$p$の最小値を$p$=~の形式で1行目に、$x,y,z$の組を$(x,y,z)$=~ の形式で2行目以降にすべて書いてください。ジャッジは自分でするのであまり気にしないで自由に回答してください。

10月前

3

問題文

三角形 $ABC$ において,$A,B,C$ から対辺に下ろした垂線の足を $D,E,F$ とし,三角形 $ABC$ の垂心を $H$ としたところ,$DE=9,DF=8,DH=7$ となりました.
このとき,$AH$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

除夜コン2023予選C3

shoko_math 自動ジャッジ 難易度:
10月前

5

問題文

$5\times5$ のマス目の異なる $2$ つのマスにナイトの駒を $1$ つずつ置き,「ナイトの駒の動きに従って $2$ つの駒を同時に動かす」という操作を繰り返したところ,$2$ つの駒が同じマスに止まりました.
このとき,最初にナイトの駒を置いた $2$ マスの組み合わせとしてあり得るものの総数を求めてください.

解答形式

半角数字で解答してください.

代数問題2

natsuneko 自動ジャッジ 難易度:
8月前

6

問題文

実数列 $\lbrace a_n \rbrace_{n = 1, 2, \cdots 2024}$ が以下を満たしています.
・ $a_0 = 0$
・ $0 \leq a_n \leq n+1$
・ $a_{2024} = 2025$

このとき,
$$\sum_{n = 1}^{2024} \sqrt{{a_{n-1}}^2 + {a_{n}}^2 - a_{n-1}a_n - 2na_{n-1} + na_n + n^2}$$
には最小値が存在するため, 最小値を取るときの $a_{1000}$ の値を求めて下さい. ($a_{1000}$ の値は一意に定まります.)

解答形式

答えは, 互いに素な正整数 $a, b$ によって $\cfrac{b}{a}$ と表されるため, $a+b$ の値を解答して下さい.

数列の問題

matsukichi 自動ジャッジ 難易度:
10月前

4

問題文

$2000$ 以下の非負整数 $a$ に対し,数列 $c_{n}$ が以下をみたします.
$$c_{1}=a, c_{2}=2000-a, c_{n+2}=c_{n+1}+c_{n}$$
このとき,$c_{2^{4333}}$ が $47^2$ の倍数となるような $a$ としてありうる値の総和を解答してください.

解答形式

半角数字で解答してください.