D

natsuneko 自動ジャッジ 難易度: 数学 > 高校数学
2024年2月21日21:00 正解数: 7 / 解答数: 10 (正答率: 70%) ギブアップ不可
初等幾何
この問題はコンテスト「NGC」の問題です。

問題文

こちらも問題に不備があったため、数値設定を変更いたしました。不備が重なってしまいたいへん申し訳ありません。

正六角形 $ABCDEF$ の線分 $AC, BC, DE$ 上にそれぞれ点 $P, Q, R$ を取ったところ, $PQ \perp BC, PR \perp DE, \angle QAR=60^\circ$ が成立しました. また, 三角形 $APQ$ の外心を $O$, 三角形 $APR$ の外心を $O^\prime$ とし, 三角形 $AOO^\prime$ の外接円と三角形 $APQ$ の外接円の交点を $X( \neq A)$, 三角形$AOO^\prime$ の外接円 と三角形 $APR$ の外接円の交点を $Y( \neq A)$ とすると, $BY=7$ が成立しました. このとき, 線分 $DX$ の長さを求めて下さい.

解答形式

答えは最大公約数が $1$ である正整数 $a,b, c$ によって $\cfrac{\sqrt{b}-c}{a}$ と表されるため, $a+b+c$ の値を半角数字で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

C

natsuneko 採点者ジャッジ 難易度:
2月前

12

問題文

問題の数値設定に不備があったため、数値設定を変更します。申し訳ありません。(三角形 $DEH$ の面積を $9$ から $3$ に変更しました。)

鋭角三角形 $ABC$ の垂心を $H$, 外心を $O$ とします. また, 直線 $BH$ と線分 $AC$ の交点を $D$, 直線 $CH$ と線分 $AB$ の交点を $E$ とします. そして, 線分 $DE$ の中点を $N$, 直線 $HN$ と直線 $AO$ の交点を $X$ とします. このとき, $A, X, O$ はこの順に並び, $AX = 3, XO = 5$ が成立しました. また, 三角形 $DEH$ の面積が $3$ であったとき, 三角形 $ABC$ の面積を求めてください.

解答形式

答えは, 正整数 $a, b$ を用いて $\sqrt{a} + b$ と表されるので, $a+b$ の値を半角数字で解答してください.

B

natsuneko 自動ジャッジ 難易度:
2月前

27

問題文

鋭角三角形 $ABC$ について, 線分 $BC$ 上に点 $D$ を取り, 三角形 $ABD$ の垂心を $H_1$, 三角形 $ADC$ の垂心を $H_2$ とします. すると, $BD = DC = H_1 H_2 = 10$, $H_1 D : H_2 D = 2 : \sqrt{10}$ が成立しました. このとき, 三角形 $ABC$ の面積としてあり得る値の総積を解答してください.

解答形式

答えは正整数になるため, その値を半角数字で解答してください.

座王001(G1)

shoko_math 自動ジャッジ 難易度:
49日前

9

問題文

鋭角三角形 $ABC$ の垂心を $H$,外心を $O$ とし,$A$ から $BC$ に下ろした垂線の足を $D$ とします.
$OH=3,AH:HD=7:2$ であり,$\triangle{ABC}$ の外接円半径が $5$ であるとき,${OD}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

A

natsuneko 自動ジャッジ 難易度:
2月前

18

問題文

三角形 $ABC$ の線分 $AB$ 上に点 $D$, 線分 $DC$ 上に点 $E$, 線分 $AC$ 上に点 $F$ を取ったところ, 以下が成立しました.
・ $\angle AED = \angle ABE = \angle EFC = 60^\circ$
・ $\angle EAC = 19^\circ$
・$DF = CF$
このとき, $\angle EBC$ の大きさは, 度数法で $N^\circ$ と表されるため, $N$ を解答してください.

解答形式

答えは正整数になるため, その値を半角数字で解答してください.


問題文

鋭角三角形 $ABC$ に対し,重心と垂心をそれぞれ $G,H$ とし,直線 $GH$ と辺 $AB,AC$ との交点をそれぞれ $D,E$ とし,直線 $AH$ と辺 $BC$ の交点を $F$ としたところ,$DH:HG=4:3,BF:FC=3:7$ となりました.
${AD}^2:{AE}^2$ は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください.

座王001(N1)

shoko_math 自動ジャッジ 難易度:
49日前

7

問題文

以下の[条件]を満たす $3$ 桁の正の整数(つまり,$100$ 以上 $999$ 以下の正の整数)の組 $(A,B)$ すべてに対し,$A+B$ の値の総和を解答してください.

[条件] $A^2$ の下 $3$ 桁は $B$ であり,$B^2$ の下 $3$ 桁は $A$ である.

解答形式

半角数字で解答してください.

座王001(G2)

shoko_math 自動ジャッジ 難易度:
49日前

10

問題文

$\triangle{ABC}$ の外接円を $O_1$ とし,辺 $CA$,辺 $CB$,円 $O_1$ に接する円を $O_2$ とします.また,円 $O_2$ と辺 $CA$ ,辺 $CB$,円 $O_1$ の接点をそれぞれ $P,Q,T$ とし,直線 $TP$ と円 $O_1$ の交点を ${R}(\ne{T})$ とし,直線 $TQ$ と円 $O_1$ の交点を $S(\ne{T})とします.$
$TA=23,TB=35,TC=57$ のとき,(四角形 $ARCS$ の面積):(四角形 $BSCR$ の面積)は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

49日前

10

問題文

円 $O_1$,円 $O_2$ が点 $P$ で外接しており,円 $O_1$ 上の点 $Q$ における円 $O_1$ の接線を引いたところ円 $O_2$ と異なる $2$ 点で交わったので,その $2$ 交点を $Q$ に近い方から順に $A,B$ とします.
$AP=4,AB=6,BP=9$ となったとき,${PQ}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

49日前

7

問題文

$\triangle{ABC}$ の辺 $AC$ に接する傍接円の中心を $I_B$,辺 $AB$ に接する傍接円の中心を $I_C$ とし,$I_BI_C$ の中点を $M$ とする.
$I_BI_C=14,BC=10$ のとき,$\triangle{MBC}$ の面積を $2$ 乗した値を解答してください.

解答形式

半角数字で解答してください

代数問題1

natsuneko 自動ジャッジ 難易度:
3月前

14

問題文

関数 $f : \mathbb{Z} \rightarrow \mathbb{Z}$ が $f(f(x) + y) = x + f(y)$ を (任意の整数の組 $(x, y)$ に対して) 満たすとき, $f(2024)$ の取りうる値の総和を解答してください.

解答形式

半角数字で解答してください.

OMC没問6

natsuneko 自動ジャッジ 難易度:
2月前

5

問題文

三角形 $ABC$ の内接円と $BC$ の接点を $D$, 三角形 $ABC$ の $\angle A$ 内の傍接円と $BC$ の接点を $E$ とし,直線 $AD$ と $\angle A$ 内の傍接円の交点のうち,$A$ から遠い方を $F$ とします.すると,
$$\angle DAE=30^\circ, \ AF=18, \ AB+CD=12$$

が成立しました.このとき,三角形 $DAE$ の面積の $2$ 乗を求めて下さい.

解答形式

答えは互いに素な正整数 $a,b$ を用いて $\cfrac{b}{a}$ と表されるため,$a+b$ の値を解答して下さい.

組み合わせ問題2

natsuneko 自動ジャッジ 難易度:
3月前

7

問題文

各文字が < か > であるような長さ $13$ の文字列 $S$ の内, 次の条件を満たす整数列 $a_1, a_2, \cdots a_{14}$ が一意に存在するようなものはいくつありますか?
・$S$ の $i$ 文字目が < ならば, $a_{i+1} = a_i + 1$
・$S$ の $i$ 文字目が > ならば, $a_{i+1} = a_i - 1$
・$1 \leq a_k \leq4 \ (k = 1, 2, \cdots, 14)$

解答形式

半角数字で解答して下さい.