パーフェクトさんすう教室 -Hard-

simasima 自動ジャッジ 難易度: 数学 > 算数
2024年4月1日9:00 正解数: 38 / 解答数: 114 (正答率: 33.3%) ギブアップ数: 4
この問題はコンテスト「USOMO003」の問題です。

全 114 件

回答日時 問題 解答者 結果
2025年1月13日2:04 パーフェクトさんすう教室 -Hard- marimolinnaei
不正解
2024年9月9日21:06 パーフェクトさんすう教室 -Hard- akkinandaze
不正解
2024年9月9日21:04 パーフェクトさんすう教室 -Hard- akkinandaze
不正解
2024年9月9日20:53 パーフェクトさんすう教室 -Hard- akkinandaze
不正解
2024年6月18日11:20 パーフェクトさんすう教室 -Hard- Fuji495616
不正解
2024年6月18日11:13 パーフェクトさんすう教室 -Hard- Fuji495616
不正解
2024年6月12日8:38 パーフェクトさんすう教室 -Hard- ulam_rasen
不正解
2024年6月12日8:37 パーフェクトさんすう教室 -Hard- ulam_rasen
不正解
2024年6月8日0:31 パーフェクトさんすう教室 -Hard- uiui+
不正解
2024年5月16日21:36 パーフェクトさんすう教室 -Hard- kokoro
不正解
2024年5月7日22:29 パーフェクトさんすう教室 -Hard- ゲスト
不正解
2024年5月7日22:26 パーフェクトさんすう教室 -Hard- ゲスト
不正解
2024年5月7日22:22 パーフェクトさんすう教室 -Hard- ゲスト
不正解
2024年4月14日23:43 パーフェクトさんすう教室 -Hard- and_ro_meda_
不正解
2024年4月14日23:42 パーフェクトさんすう教室 -Hard- and_ro_meda_
不正解
2024年4月12日13:48 パーフェクトさんすう教室 -Hard- 0__citrus
不正解
2024年4月7日16:56 パーフェクトさんすう教室 -Hard- orangekid
不正解
2024年4月7日16:54 パーフェクトさんすう教室 -Hard- orangekid
不正解
2024年4月6日1:54 パーフェクトさんすう教室 -Hard- Tehom
正解
2024年4月6日1:43 パーフェクトさんすう教室 -Hard- Tehom
不正解
2024年4月4日3:52 パーフェクトさんすう教室 -Hard- Lenqth
正解
2024年4月3日18:05 パーフェクトさんすう教室 -Hard- tyuyu_62
正解
2024年4月3日18:01 パーフェクトさんすう教室 -Hard- tyuyu_62
不正解
2024年4月3日9:04 パーフェクトさんすう教室 -Hard- miq_39
正解
2024年4月3日8:59 パーフェクトさんすう教室 -Hard- miq_39
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

9月前

95

問題文

さるのも答えが9になる足し算の式を自分で一つ思いついたようです。さるのの考えた足し算の式を当ててください。
ただし、さるのの考えた足し算の式が解答した文字列の(連続していなくても良い)部分文字列にあれば正解とします。
例えば、「129+1341398+89006」と解答した場合、さるのの考えた足し算の式が「9」や「1+8」や「2+1+6」だった場合には正解ですが、「2+7」や「1+2+3+2+1」や「1+2+6」だった場合は不正解と判定されます。

例えば、答えが5になる足し算になる式として「3+2」「1+1+1+1+1」「5」などが挙げられます。
「1+2×2」や「0+1+4」や「0.5+4.5」や「-1+6」や「+3+2」や「⑨」などは足し算の式ではない事に注意してください。

足し算の式の厳密な定義 (これは全難易度で共通です)
足し算の式の各文字は1,2,3,4,5,6,7,8,9,+のいずれかで、先頭と末尾の文字は数字で、+どうしは連続しない。
その足し算の式を通常の数式として計算した結果がその足し算の式の答えになる。

解答形式

半角で1行で解答してください。「」は付けないでください。
例えば「129+1341398+89006」と解答したい場合は次のように解答してください。
129+1341398+89006

9月前

88

問題文

さるのは答えが9になる足し算の式を知りたいです。そのような足し算の式は沢山ありますが、そのうち一つを解答してください。(答えは複数存在しますが、どれを解答しても正解になります)

例えば、答えが5になる足し算になる式として「3+2」「1+1+1+1+1」「5」などが挙げられます。
「1+2×2」や「0+1+4」や「0.5+4.5」や「-1+6」や「+3+2」や「⑨」などは足し算の式ではない事に注意してください。

足し算の式の厳密な定義 (これは全難易度で共通です)
足し算の式の各文字は1,2,3,4,5,6,7,8,9,+のいずれかで、先頭と末尾の文字は数字で、+どうしは連続しない。
その足し算の式を通常の数式として計算した結果がその足し算の式の答えになる。

解答形式

半角で1行で解答してください。「」は付けないでください
例えば「3+2+1」と解答したい場合は次のように解答してください
3+2+1

みんなでかくれんぼ

simasima 自動ジャッジ 難易度:
9月前

82

「このミニゲームはWiiリモコンを縦にもって遊びます」

ミニゲームのルール

まず3人側が、それぞれ好きな所にかくれ、1人側がさがします。5回のチャンスで全員見つけたら1人側の勝ちです。
参考: https://www.youtube.com/watch?v=9gEDX_oEmZE

問題

このゲームの隠れ場所は、$b_1,a_1,a_2,a_3,a_4,a_5,a_6$ の $7$ 箇所ありますが、$b_1$ (真ん中の遊具) に隠れた場合は外から見えてしまいます。(見つけるのにチャレンジは1回使う必要がある)なので、通常は $a_1,a_2,a_3,a_4,a_5,a_6$ の $6$ つからランダムに選びます。3人は相談できず独立に隠れ場所を選ぶので同じ場所に隠れる事もあります。この時、3人側の勝率は $91/216$ になります。
このゲームで遊んでいるしましま君は間違えて$b_1$に隠れてしまいました。他の2人は $a_1,a_2,a_3,a_4,a_5,a_6$ の $6$ つから独立にランダムに選びました。1人側は最初に$b_1$を探し、その後はランダムに探します。この時の3人側の勝率を求めてください。
追記(11:06):1人側は十分賢いので、一度探した所はもう一度探しません。

解答形式

答えは既約分数で$a/b$と表せるので、$a+b$ を回答してください。

9月前

88

問題文

全ての 答えが9になる足し算の式 を部分文字列として含む長さが31の文字列を解答するのがHard問題でしたが、さるのはこの問題の答えとしてありうる文字列が何通りあるのか気になりました。しかし、計算が面倒すぎて投げ出してしまいました。しかし、全ての 答えが 7 になる足し算の式 を部分文字列として含む長さが 22 の文字列なら何通りあるか計算できたようです。

全ての 答えが 7 になる足し算の式 を(連続していなくても良い)部分文字列として含む長さが 22 の文字列がいくつ存在するか計算してください。
なお、答えが 7 になる足し算の式 を(連続していなくても良い)部分文字列として含む長さが 21 以下の文字列は存在しないことが証明できます。

例えば、答えが5になる足し算になる式として「3+2」「1+1+1+1+1」「5」などが挙げられます。
「1+2×2」や「0+1+4」や「0.5+4.5」や「-1+6」や「+3+2」や「⑨」などは足し算の式ではない事に注意してください。

足し算の式の厳密な定義 (これは全難易度で共通です)
足し算の式の各文字は1,2,3,4,5,6,7,8,9,+のいずれかで、先頭と末尾の文字は数字で、+どうしは連続しない。
その足し算の式を通常の数式として計算した結果がその足し算の式の答えになる。

解答形式

半角で非負整数を解答してください。

体育会系数学部

simasima 自動ジャッジ 難易度:
9月前

42

問題文

正整数 $n$ について $d(n)$ で $n$ の正の約数の個数を表すとき、
$$\sum^{100000}_{k=1}d(k)$$
の値を求めよ。

以下は体育会系数学部のある部員がこの問題に挑戦した記録である。


とりあえず1から順に約数の個数を数えていくぞ!
$d(1)=1$
$d(2)=2$
$d(3)=2$
$d(4)=3$
...
$d(100)=9$
これを $100000$ までやるのは大変だな...
もしかして主客転倒すれば
$$\sum^{100000}_{k=1} \left [\frac{100000}{k}\right ]$$
を計算すればいいのでは?やってみよう!
$\sum^{1}_{k=1} [\frac{100000}{k} ] =100000$

$\sum^{2}_{k=1} [\frac{100000}{k}] =150000$

$\sum^{3}_{k=1} [\frac{100000}{k}] =183333$

...

$\sum^{100}_{k=1} [\frac{100000}{k} ] =518692$

この調子でどんどん計算していくぞ!

...

$\sum^{1000}_{k=1} [\frac{100000}{k} ] =748058$

流石に疲れてきたな...

...

$\sum^{2024}_{k=1} [\frac{100000}{k} ] = 818025$

意識が朦朧としてきた...


その後部員は救急車で病院に搬送された。
部員の途中計算は間違っていないようだ。部員の意思を継いでこの問題の答えを出してほしい。

解答形式

非負整数で解答してください。

全不変眼数列

simasima 自動ジャッジ 難易度:
9月前

54

問題文

実数上の二項演算である「見せ算」を次のように定義します(今回は見せ算の中でも初等的な性質のみ扱います。)
$$
x \spadesuit y= \begin{cases} y & (x<y) \\ 0 & (x= y)\\ x & (x> y) \end{cases}
$$
この見せ算では結合法則が成り立たたず、計算順序により眼(答え)が変わる事があります。例えば、$((4 \spadesuit 4) \spadesuit 3)=3$ ですが、$(4 \spadesuit (4 \spadesuit 3))=0$ です。
数列 $(a_1,a_2,...,a_n)$ であって、$a_1\spadesuit a_2\spadesuit ....\spadesuit a_n$ をどんな順序で計算しても眼(答え)が変わらない数列を 全不変眼数列 と呼びます。
例えば、$(0,4,0,1)$ はどのような順序で計算しても眼が $4$ になるので 全不変眼数列 ですが、$(1,2,2,1)$ は $(((1 \spadesuit 2) \spadesuit 2) \spadesuit 1)=1$、 $(1 \spadesuit ((2 \spadesuit 2) \spadesuit 1))=0$ であるため 全不変眼数列 ではありません。
長さが $24$ で、$0,1,2,3$ を要素としてそれぞれ $6$ つずつ持つような 全不変眼数列 はいくつありますか?

解答形式

半角で解答してください

Golden Gokiburi

simasima 自動ジャッジ 難易度:
9月前

62

問題文

大変だ!Golden Gokiburi が座標 $(0,0)$ に出たぞ!
Golden Gokiburi は 一回の移動で $(x,y)$ から $(x+1,y+1)(x,y+1)(x-1,y+1)(x+1,y)(x-1,y)(x,y-1)$ の6地点のうちいずれか一つに等確率で移動します。
$(3,7)$ にいるしましま君は不安で不安で仕方がありません。
$(0,0)$ にいる Golden Gokiburi が $900$ 回移動した後の $(3,7)$ と Golden Gokiburi との距離の $2$ 乗の期待値を求めてください。

解答形式

答えは非負整数になるので半角で解答してください。

1を含んだ規則的な数列

Tiri7_Ma13a_ 自動ジャッジ 難易度:
9月前

50

問題文

$ $ 地理奈ちゃんは,$1$ を含んだ数列をいくつか思い浮かべようとしています.
$ $ そこで,以下のルールをすべて守った数列を,良い数列と呼ぶことにします:

  • $1$ 以上 $9$ 以下の整数から $3$ つを選んでいる数列である.
  • その数列は公差が $0$ でない等差数列である.
  • 数列のどこか $1$ 項に必ず $1$ を含んでいる.

$ $ この時,良い数列は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.

しましまのアンチ

simasima 自動ジャッジ 難易度:
9月前

50

問題文

$1$文字目と$3$文字目が等しく、$2$文字目と$4$文字目が等しい$4$文字の文字列をしましま文字列と呼ぶことにします。
例えば「しましま」や「bcbc」や「aaaa」はしましま文字列ですが、「もじれつ」や「ababa」や「abac」などはしましま文字列ではありません。

しましまは嘘の競技数学コンテストUSOMOを懲りずに毎年開いているので、ついにHONTOMOの元日本代表のアンチがついてしまいした(悲しい...)
しましま文字列を(連続しなくても良い)部分文字列として持たない文字列をアンチしましま文字列と呼ぶことにします。
例えば「ししまま」や「abcbba」や「abcdefgcc」はアンチしましま文字列ですが、「しましまし」や「abbcbba」や「acbadb」はアンチしましま文字列ではありません。

15文字のアンチしましま文字列であって全ての文字が a,b,c,d,e の5文字のうちのいずれかであるような文字列はいくつ存在しますか?

解答形式

非負整数を半角で入力してください

TMCMC001(B)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
6月前

75

問題文

$ $ 正方形の中を等間隔に区切ってできた $6×6$ のマス目があります.正方形の中心を中心として点対称となるようにマス目を塗ることを考えます.
$ $ 正方形全体で $10$ マスちょうどを塗るとき,マス目の塗られ方は何通りありますか?ただし,反転・回転して一致するものは全て区別します.

解答形式

非負整数を半角で解答してください.

TMCMC001(A)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
6月前

67

問題文

$ $ $1$ を $3$ つ,$2$ を $1$ つ,$7$ を $2$ つを全て使い,それらを並べ替えてできた長さ $6$ の文字列は全部でいくつありますか?
$ $ ただし,同じ文字は区別しません.

解答形式

非負整数を半角で解答してください.

9月前

80

問題文

$ $ 地理奈ちゃんは,$10$ 面サイコロを $4$ つ持っており,それを $4$ つ全て同時に $1$ 回振ることを考えます.ここでの $10$ 面サイコロは,$1$ 以上 $10$ 以下の整数の目が同様に確からしい確率で $1$ つ出るサイコロとします.
$ $ また,サイコロの出目により,それぞれのサイコロに対して,成功数を以下のように定義します.

  • 出目が $1$ のとき $2$
  • 出目が $2$ 以上 $7$ 以下のとき $1$
  • 出目が $8$ 以上 $9$ 以下のとき $0$
  • 出目が $10$ のとき $-1$

$ $ この時,$4$ つのサイコロを振って,その成功数の合計が $0$ 以下になる確率は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ を解答してください.

【追記】
難しすぎるという意見をいただいたので難易度を2→3に変更しました。

解答形式

非負整数を半角で解答してください.