自作問題A1

imabc 自動ジャッジ 難易度: 数学 > 競技数学
2024年3月30日18:00 正解数: 7 / 解答数: 7 (正答率: 100%) ギブアップ数: 6
不等式

問題文

正の実数 $x,y,z$ が $xyz=x+y+z+2$ を満たしています.このとき, $x+4y+9z$ の最小値を求めてください.

解答形式

答えを入力してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

数列の問題

matsukichi 自動ジャッジ 難易度:
10月前

4

問題文

$2000$ 以下の非負整数 $a$ に対し,数列 $c_{n}$ が以下をみたします.
$$c_{1}=a, c_{2}=2000-a, c_{n+2}=c_{n+1}+c_{n}$$
このとき,$c_{2^{4333}}$ が $47^2$ の倍数となるような $a$ としてありうる値の総和を解答してください.

解答形式

半角数字で解答してください.

No.01 展開と因数分解

Prime-Quest 自動ジャッジ 難易度:
10月前

5

問題

$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ.
$(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.

解答形式

$(1),(2)$ の和を半角数字で入力してください.

6月前

5

問題文

四角形$ABCD$があります.線分$AC$上に点$P$を,線分$BP$上に点$Q$を,線分$DP$上に点$R$を取ります.直線$AQ$と線分$BC$,直線$CQ$と線分$AB$,直線$AR$と線分$CD$,直線$CR$と線分$AD$の交点をそれぞれ$S,T,U,V$とします.
$$\triangle BSA=(四角形BSPT)+8=\triangle BCT+12
\\\\\triangle AUD =30,\triangle CDV=25$$
が成り立つとき四角形$DVPU$の面積を求めてください.

解答形式

求める値は互いに素な自然数$p,q$を使って$\cfrac{q}{p}$と表されるので$p+q$の値を答えてください.

(変更 2024/6/27 ヒントを変えました.解説を未正解者も見れるように変更しました.)

自作問題C1

imabc 自動ジャッジ 難易度:
7月前

6

問題文

以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.

  • $a_0=a_{20000}=0$ .
  • $k=0,1,…,19999$ について $|a_{k+1}-a_k|=1$ .

また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.

  • 以下の条件を全て満たす $1001$ 個の整数の組 $(x_0,x_1,…,x_{1000})$ の個数.
    $\quad$ ・ $k=0,1,…1000$ について $x_k$ は $0$ 以上 $20000$ 以下の 偶数
    $\quad$ ・ $k=0,1,…999$ について $x_k\lt x_{k+1}$ .
    $\quad$ ・ $a_{x_{1000}}=0$ .

階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.

解答形式

答えを入力してください.

最小値

matsukichi 自動ジャッジ 難易度:
10月前

4

問題文

$a\lt c$ なる実数 $a, b, c$ が
$$\sqrt{(1+a^2)(1+b^2)}=\dfrac{(b+c)(c-a)}{1+c^2}$$
をみたすとき,$(8a+13b+21c)^2$ の取りうる最小値を解答してください.

解答形式

半角数字で解答してください.

自作問題その8

MARTH 自動ジャッジ 難易度:
8月前

8

関数列 $\{f_n\}_{n=0,1,\dots}$ が以下を満たします.

  • $f_{0}(x)=e^{e^x}$
  • $f_{n}(x)=\dfrac{d}{dx}f_{n-1}(x)\quad (n=1,2,\dots)$.

また, 実数列$\{A_n\}_{n=1,2,\dots}, \{B_n\}_{n=1,2,\dots}$を以下のように定義します.

  • $\displaystyle A_n=\lim_{x\rightarrow-\infty}e^{-x}f_{n}(x)$ .
  • $\displaystyle B_n=\lim_{x\rightarrow-\infty}e^{-x}\big(e^{-x}f_{n}(x)-A_n)$.

$B_{24}$ の値を求めてください.

階乗の級数

MARTH 自動ジャッジ 難易度:
5月前

6

$a_1+2a_2+3a_3=n$ を満たす非負整数の組 $(a_1,a_2,a_3)$ 全てについて,
$$\frac{(a_1+a_2+a_3)!}{a_1!\times a_2!\times a_3!}$$
の総和を $f(n)$ とします.
$f(n)\equiv 6 \pmod{12}$ を満たす最小の正整数 $n$ を求めてください.

座王001(サドンデス6)

shoko_math 自動ジャッジ 難易度:
8月前

22

問題文

$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください.
(ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)

解答形式

半角数字で解答してください.

「おおきなかぶ」F問題

Furina 自動ジャッジ 難易度:
12月前

17

問題文

数列 $a_n$ は,$a_1=\sqrt{2-2\cos{\left(\dfrac{882}{5}\right)^\circ}},a_2=1-2\cos{\left(\dfrac{882}{5}\right)^\circ}$ として,以下の漸化式を満たします.
$$a_{n+1}=\dfrac{(a_n)^2-1}{a_{n-1}}(n=2,3,4,\cdots)$$
 このとき,$\lfloor (a_{49})^2\rfloor$ の値を求めてください.ただし,$-0.998027<\cos{\left(\dfrac{882}{5}\right)^\circ}<-0.998026$を用いても構いません.

解答形式

$\lfloor (a_{49})^2\rfloor$ を解答してください.$\lfloor x\rfloor$ は$x$を超えない最大の整数です.

音符の達人

YoneSauce 自動ジャッジ 難易度:
5月前

14

問題文

赤い音符と青い音符の二種類の音符を横に並べたものを譜面と呼びます.
以下の条件を同時に全て満たすような譜面がいくつあるかを求めてください.

  • その譜面の赤い音符と青い音符の合計はちょうど $17$ 個である.
  • その譜面の最も左の音符は赤い音符である.
  • その譜面の左から $2$ 番目の音符は青い音符である.
  • その譜面から任意の $3$ つの連続する音符を抜き出したとき,それが左から順に
    「赤い音符,青い音符,赤い音符」にならない
  • その譜面から任意の $3$ つの連続する音符を抜き出したとき,それが左から順に
    「青い音符,赤い音符,青い音符」にならない

解答形式

非負整数を半角数字で入力し解答してください。


問題文

鋭角三角形 $ABC$ に対し,重心と垂心をそれぞれ $G,H$ とし,直線 $GH$ と辺 $AB,AC$ との交点をそれぞれ $D,E$ とし,直線 $AH$ と辺 $BC$ の交点を $F$ としたところ,$DH:HG=4:3,BF:FC=3:7$ となりました.
${AD}^2:{AE}^2$ は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください.

多項式の割り算

sha256 自動ジャッジ 難易度:
8月前

9

問題文

$n,m \ (m\geq n)$を正整数の定数とし、多項式$f(x)$を$f(x)=x^m$で定めます。
$f(x)$を$(x-2)^n$で割った商$Q(x)$について、$Q(2)=40$が成立しました。

$(n,m)$の組としてあり得るもの全てについて、$nm$の総和を求めてください。

解答形式

正整数値を半角で入力してください。