自作問題1

aonagi 自動ジャッジ 難易度: 数学 > 競技数学
2024年4月10日19:34 正解数: 12 / 解答数: 19 (正答率: 63.2%) ギブアップ数: 1

解説

対角線を元の長さに対して $10,12,15$ 等分する $3$ つの操作によって,いくつの線分に分けられるかを考えればよい.

$3$ 種類の分割のうち複数が同時に施される部分に注意することで,対角線の分割数は以下で与えられる.

$$10+12+15-2-3-5+1=\mathbf{28}$$


おすすめ問題

この問題を解いた人はこんな問題も解いています

座王001(サドンデス5)

shoko_math 自動ジャッジ 難易度:
14月前

19

問題文

$1,2,3,4,5,6,7,8,9$ を並べ替えてできる $9$ 桁の正の整数のうち $99$ の倍数であるものの最大値を求めてください.$\

解答形式

半角数字で解答してください.

座王001(サドンデス3)

shoko_math 自動ジャッジ 難易度:
14月前

12

問題文

$101\times101$ のマス目の各マスには $0,1$ のいずれかが書かれており,どの $2\times2$ のマス目についても $0,1$ が少なくとも $1$ つずつは書き込まれているとき,マス目に書かれた数の和の最大値を求めてください.

解答形式

半角数字で解答してください.

座王001(サドンデス6)

shoko_math 自動ジャッジ 難易度:
14月前

24

問題文

$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください.
(ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)

解答形式

半角数字で解答してください.

14月前

12

問題文

直線 $AT$ に点 $T$ で接する円 $\Gamma$ を描き,$A$ を通る直線 $m$と円 $\Gamma$ の交点を $A$ に近い方から順に $B,C$ とします.
また,$\angle{CAT}$ の二等分線と直線 $BT$,直線 $CT$ の交点をそれぞれ $D,E$ とします.
$BD=4,DE=8,EC=9$ となったとき,$\triangle{TBC}$ の面積を $S$ とすると,$S^2$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.


問題文

下図は、直角二等辺三角形と正三角形と頂角が150°の二等辺三角形を組み合わせた図形です。直角二等辺三角形の面積が24㎠のとき、図形全体の面積を求めなさい。

解答形式

単位は㎠(単位は書かなくてよい)、数字は半角で入力してください。
例)10

座王001(A2)

shoko_math 自動ジャッジ 難易度:
14月前

13

問題文

実数 $x,y,z$ が
$\begin{cases}
x+y+z=\dfrac{7}{2}\\
x^2+y^2+z^2+3(xy+yz+zx)=14\\
x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=8
\end{cases}$
を満たすとき,$\dfrac{y^2}{x^2}+\dfrac{z^2}{y^2}+\dfrac{x^2}{z^2}$ の値として考えられるものの総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

座王001(サドンデス2)

shoko_math 自動ジャッジ 難易度:
14月前

9

問題文

三角形 $ABC$ の辺 $AB,AC$ 上に ${BC}\parallel{DE}$ となるよう $D,E$ をとり,さらに,$D,F,G,E$ がこの順に並ぶように点 $F,G$ を線分 $DE$ 上にとる.さらに,辺 $BC$ と直線 $AF,AG$ との交点をそれぞれ $H,I$ とする.
三角形 $ADF$,四角形 $FGIH$,$AEG$ の面積がそれぞれ $3,5,8$ であるとき,三角形 $ABC$ の面積の最小値は正の整数 $a,b$ および平方因子をもたない正の整数 $c$ を用いて $a+b\sqrt{c}$ と表せるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で解答してください.

2つの正方形と円

Fuji495616 自動ジャッジ 難易度:
15月前

10

問題文

下図は、2つの正方形と円を組み合わせた図形です。点(●)は小さい正方形の辺を4等分する点で、円は大きい正方形に内接しています。大きい正方形の面積が60㎠のとき、小さい正方形の面積は何㎠ですか。

解答形式

半角数字で入力してください。
例)10

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
12月前

17

問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません

N1

orangekid 自動ジャッジ 難易度:
14月前

15

問題文

次の方程式の整数解を求めよ。
ただし、$p, q$は非負整数である。
$$
x^2-15x+3^p-2^q=0
$$

解答形式

半角数字で小さい順につなげて入力してください。
例 $x=-4,-1,0,3,4$の時 -4-1034

求面積問題24

Kinmokusei 自動ジャッジ 難易度:
3年前

13

問題文

扇形内部に図のように線を引きました。青い三角形の面積が12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

14月前

11

問題文

$\triangle{ABC}$ の辺 $AC$ に接する傍接円の中心を $I_B$,辺 $AB$ に接する傍接円の中心を $I_C$ とし,$I_BI_C$ の中点を $M$ とする.
$I_BI_C=14,BC=10$ のとき,$\triangle{MBC}$ の面積を $2$ 乗した値を解答してください.

解答形式

半角数字で解答してください