素数の確率問題

koukiyayo 自動ジャッジ 難易度: 数学
2024年4月28日1:00 正解数: 22 / 解答数: 34 (正答率: 64.7%) ギブアップ数: 1

問題文

$1$ 以上 $100000$ 以下の整数から無作為に1つ選ぶとき,全ての桁の数がそれぞれ素数になる確率は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せます.$a+b$ を解答してください.

例えば,$23$ は各桁の数が $2$ と $3$ で,これは全ての桁の数が素数になります.
$17$ は各桁の数が $1$ と $7$ ですが,$1$ は素数ではないので全ての桁の数が素数にはなりません.

回答形式

非負整数を半角で回答してください。

問題文を一部変更しましたが答える内容は変わっていません。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

新春問題

arc_sin 自動ジャッジ 難易度:
10月前

22

問題文

2024^2023の正の約数の個数はいくつか?

解答形式

半角で回答
例)100

見掛け倒し

mahiro 自動ジャッジ 難易度:
12月前

28

問題文

$2^{20}!!$ は $2$ で何回割り切れますか?

解答形式

半角数字でお答え下さい。
計算機はご自由にお使いください。

分数の足し算

tsukemono 自動ジャッジ 難易度:
8月前

29

問題文

次の計算をせよ。
$$
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}
$$

解答形式

分子/分母 の形で解答してください
既約分数で解答してください
例 1/3


問題文

$\dfrac{777777777}{888888}$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

知ってたら簡単な整数問題

noname 自動ジャッジ 難易度:
8月前

20

${999}$を2以上の最小の$2$つの立方数の差で表せ。

問題を一部訂正しました。毎度毎度誠に申し訳ございません。問題ミスがあったためこれまでの解答は正解にしました。

解答形式

a>b>1の自然数を用いてa^3-b^3というふうに表せるのでabと2つの整数を連続して半角で書いてください。
(例:15^3-3^3なら解答は153)

単純な整数問題

adg 自動ジャッジ 難易度:
7月前

23

問題

自然数a b c について
abc-ab-a=17
a<b<c
となる自然数のa b c の組の数を答えなさい

解答形式

半角数字で答えてください

G414xy 自動ジャッジ 難易度:
7月前

49

問題文

xy=(x-1)(y-1)+10 となるxyの総和を求めよ。但し、x,yは正整数とする。

解答形式

半角数字で入力すること。

SMC100(問題5)

shoko_math 自動ジャッジ 難易度:
8月前

38

問題文

正の整数 $n$ に対し,$n$ の正の約数の個数を $f(n)$ と表します.
$f(f(n))=5$ となる最小の正の整数 $n$ を求めてください.

解答形式

半角数字で解答してください.

方程式の解の個数

tsukemono 自動ジャッジ 難易度:
8月前

12

問題文

$a$を定数とする。
このとき、$x$についての方程式$|x²+6x-7|-a=0$ の実数解の個数が3個になるような$a$の値を求めよ。

解答形式

a=𓏸𓏸というふうに解答してください。
また、全て半角で解答してください。
答えのみ入力してください。

N1

orangekid 自動ジャッジ 難易度:
8月前

14

問題文

次の方程式の整数解を求めよ。
ただし、$p, q$は非負整数である。
$$
x^2-15x+3^p-2^q=0
$$

解答形式

半角数字で小さい順につなげて入力してください。
例 $x=-4,-1,0,3,4$の時 -4-1034

orangekidの異常な愛情

orangekid 自動ジャッジ 難易度:
6月前

29

$\text{n-テトロミノ}$とは、正方形を四つ、下のようにつなげた図形です。

orangekidくんはこの図形が大好きなので、下の図のような形をした画用紙からなるべく多くの$\text{n-テトロミノ}$を切り出したいです。

$\text{n-テトロミノ}$を裏返しの状態で切り出してもよいものとするとき、orangekidくんは最大何個の$\text{n-テトロミノ}$を切り出せるでしょうか。
「個」はつけずに、整数値のみで答えてください。

素因数分解

lemonoilemon 自動ジャッジ 難易度:
6月前

25

問題文

$12$桁の整数$111111111111$の素因数の総和を求めてください.
但し,素因数の1つとして4桁の素数が含まれます.

解答形式

整数で答えてください.