5進数で表された[2024]を2進数で表せ。
数字のみでOK
5進数→10進数→2進数
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
(1+i)^2を計算してください。
半角で入力してください。
下図で、 四角形ABCDは平行四辺形です。四角形ABCDの面積が50㎠、五角形GHIJKの面積が5㎠のとき、十角形DGEHFIBJCK(青い部分)の面積は何㎠ですか。ただし、図は正確とは限りません。
半角数字で入力してください。 例)10
△ABCの内心をI, 直線AIとBCの交点をDとするとAI=CI=CD=6 であった. このときACの長さは正の整数a,b を用いて√a+bと表せるので, a+bを解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
$$ 次の因数分解の形はどれか。\\ {m}^{2}{n}^{2}+lm{n}^{2}+{l}^{2}{m}^{2}n+{l}^{2}m{n}^{2} $$ $$ (1)l(lm+1)(ln+n)(m+mn) (2)l(ln+m)(mn+1)(l+mn) (3)l(ln+1)(m+n)(lmn+mn) (4)l(lm+1)(m+n)(mn+lmn) $$
xy平面上にて、中心が直線y=3x上にあり、直線2x+y=0に接し、点(2,1)を通る円の方程式は(x-a)^2+(x-b)^2=r^2である。 a、b、r^2の値をそれぞれ求めよ。
a○b△R□ ○△□のところに答えの数字を入力してください。 r^2はRと表記してください。 a=2 b=3 r^2=4の場合 a2b3R4と入力
$$ |{i}^{2n+2}| $$
$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記: 回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します. この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように 並び替えただけの組は同一のものとみなします.
$x,y$を自然数とする。$x^2+8y$と$y^2+8x$がともに平方数になるような$x,y$の組$(x,y)$をすべて求めよ。
例えば、$(x,y)=(1,2),(13,4),(51,16)$と答えたい場合は
12 134 5116
と入力してください。解の組は$x$の値が小さい順に並べてください。$x$の値が同じで$y$の値が異なる場合は$y$の値が小さい方を先に入力してください。
半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。 ※平行四辺形の一辺と半円は接する。
$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。
$AB>AC$なる鋭角三角形$ABC$において, $C$から$AB $に下ろした垂線の足を$D$, $BC$の中点を$M$, $AM$と$CD$の交点を$E$とし, 円$BDM$と$CD$の交点のうち$D$ではない方を$F$, 円$CDM$と$AM$の交点のうち$M$ではない方を$G$とします. $CD=32$, $DM=20$, $EF=5$であるとき, $FG$の長さの$2$乗を解答してください.
半角数字で入力してください.
${999}$を2以上の最小の$2$つの立方数の差で表せ。
a>b>1の自然数を用いてa^3-b^3というふうに表せるのでabと2つの整数を連続して半角で書いてください。 (例:15^3-3^3なら解答は153)