PGC005 (C)

pomodor_ap 自動ジャッジ 難易度: 数学 > 競技数学
2024年11月21日21:00 正解数: 15 / 解答数: 21 (正答率: 71.4%) ギブアップ数: 0
この問題はコンテスト「PGC005」の問題です。

全 21 件

回答日時 問題 解答者 結果
2024年11月22日1:19 PGC005 (C) 1628
正解
2024年11月22日1:18 PGC005 (C) 1628
不正解
2024年11月22日1:17 PGC005 (C) 1628
不正解
2024年11月21日23:07 PGC005 (C) Tehom
正解
2024年11月21日22:40 PGC005 (C) 0__citrus
不正解
2024年11月21日22:28 PGC005 (C) Weskdohn
正解
2024年11月21日22:27 PGC005 (C) shoko_math
正解
2024年11月21日22:27 PGC005 (C) Nyarutann
不正解
2024年11月21日22:21 PGC005 (C) kinonon
正解
2024年11月21日22:16 PGC005 (C) ISP
正解
2024年11月21日22:06 PGC005 (C) MARTH
正解
2024年11月21日22:01 PGC005 (C) MARTH
不正解
2024年11月21日21:50 PGC005 (C) yuyusama
正解
2024年11月21日21:35 PGC005 (C) imabc
正解
2024年11月21日21:33 PGC005 (C) imabc
不正解
2024年11月21日21:32 PGC005 (C) sta_kun
正解
2024年11月21日21:30 PGC005 (C) degrom0203
正解
2024年11月21日21:11 PGC005 (C) sdzzz
正解
2024年11月21日21:10 PGC005 (C) natsuneko
正解
2024年11月21日21:05 PGC005 (C) MrKOTAKE
正解
2024年11月21日17:22 PGC005 (C) Furina
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

PGC005 (B)

pomodor_ap 自動ジャッジ 難易度:
5時間前

28

問題文

$BC=123, \angle B=90^{\circ}$ なる三角形 $ABC$ について,内心を $I$,$\angle A$ 内の傍心を $J$ とすると,四角形 $ABIC$ は三角形 $BCJ$ よりも面積が $246$ 大きくなりました.$AB$ の長さを求めてください.

PGC005 (A)

pomodor_ap 自動ジャッジ 難易度:
5時間前

31

問題文

$BC=18$ かつ面積が $162$ なる三角形 $ABC$ について,重心を $G$,$G$ から $BC$ に下ろした垂線の足を $P$ とすると,三角形 $PGC$ の面積が $30$ となりました.$AC$ の長さの二乗を求めてください.

PGC005 (D)

pomodor_ap 自動ジャッジ 難易度:
5時間前

9

問題文

$AB<AC$ なる三角形 $ABC$ について,$C$ を通り $B$ で直線 $AB$ に接する円 $\gamma$ と線分 $AC$ の $C$ でない交点を $D$,$D$ を通り $A$ で直線 $AB$ に接する円 $\omega$ と $\gamma$ の $D$ でない交点を $E$ とします.いま,三角形 $ABC$ の外心を $O$ とすると,$$OD=OE, DE=2, BC=11$$ が成り立ちました.線分 $AC$ の長さの二乗を求めてください.

bMC_C

bzuL 自動ジャッジ 難易度:
4月前

31

問題文

凸五角形 $ABCDE$ は以下を満たします.
$$
\begin{cases}
AB=BC=CD=DE \\\\
2\angle{BAE} = \angle{CBA}\\\\
2\angle{ECA} = \angle{AEC} = \angle{BAE} + 30^{\circ}
\end{cases}
$$
このとき,互いに素な正整数 $a,b$ を用いて $\angle{EDB}=\bigg(\dfrac{a}{b}\bigg)^{\circ}$と表すことができるので,$a+b$ を答えてください.

解答形式

半角数字で解答してください.

KOTAKE杯(S)

MrKOTAKE 自動ジャッジ 難易度:
3月前

29

問題文

AB:AC=1:2である△ABCがありACの中点をMとする.
△ABMの外接円とBCの交点のうちBでないものをDとおき,
AC上に∠ADE=90°となる点 EをとるとCD=30, DE=10であった.
このときBDの長さを解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(N)

MrKOTAKE 自動ジャッジ 難易度:
3月前

25

問題文

△ABCの外心をOとする. AOを直径とする円とAB, ACの交点のうちAでないものを
それぞれD,EとするとDE=3, CD=5であり四角形BCEDは内接円を持ちました.
このとき△ABCの面積を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

bMC_D

bzuL 自動ジャッジ 難易度:
4月前

46

問題文

非負実数 $x,y,z$ が $x+y+z=1$ を満たすとします.
$$
x^{5001}y^{5002} + y^{5001}z^{5002} +z^{5001}x^{5002}
$$
の最大値は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができます.$a+b$ を素数 $4999$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

KOTAKE杯(T)

MrKOTAKE 自動ジャッジ 難易度:
3月前

33

問題文

△ABCの重心Gに関してAと対称な点をDとすると4点ABDCは共円であり,
AB=6, BD=4であった. このときADの長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

bMC_G

bzuL 自動ジャッジ 難易度:
4月前

19

問題文

$1,\ldots,2024$ の並べ替え $a_1,\ldots,a_{2024}$ に対して,スコア
$$
\sum_{k=1}^{2024} (2024a_k-k-1)(a_k-2024k)
$$
で定めます.$2024!$ 通りの並べ替えに対して,スコアとしてあり得る値はいくつありますか.

解答形式

半角数字で解答してください.

KOTAKE杯(L)

MrKOTAKE 自動ジャッジ 難易度:
3月前

29

問題文

AB=30, AC=36の△ABCがあり線分BC上にBDECの順に並びBD:DE:EC=1:5:3となるよう
点D,Eをとると,線分ABとACに接し点D,Eを通る円が存在した.
このときBCの長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

bMC_B

bzuL 自動ジャッジ 難易度:
4月前

36

問題文

$728^{(729^{730})} + 730^{(729^{728})}$ は $3$ で最大何回割れますか.

解答形式

半角数字で解答してください.

KOTAKE杯(F)

MrKOTAKE 自動ジャッジ 難易度:
3月前

46

問題文

四面体ABCDは以下を満たす.
AB=AC=AD=13, BC=6, CD=8, BD=10
このとき四面体ABCDの体積を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.