正方形と円の接線

kusu394 自動ジャッジ 難易度: 数学 > 競技数学
2024年6月17日0:53 正解数: 5 / 解答数: 6 (正答率: 83.3%) ギブアップ数: 1

問題文

正方形 $ABCD$ の辺 $BC$ 上に点 $E$ をとると,
$$BE=7,\ \ \ \ CE=5$$が成り立ちます.$E$ を中心とした半径 $7$ の円を $O$ とし,正方形 $ABCD$ の内部かつ円 $O$ の周上の点 $F$ をとると直線 $DF$ は円 $O$ の接線となりました.このとき,線分 $CF$ の長さは正整数 $a,b$ と素数 $c$ を用いて $\displaystyle{\frac{a+\sqrt{b}}{c}}$ と書けるので $a+b+c$ の値を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
答えひらがなな訳ありませんでした、失礼しました


ヒント1

$\sqrt{b}$ は $d\sqrt{e}$ を $\sqrt{d^2e} $ の形で書き直した値,すなわち $b=d^2e$ の値を解答することになります.

ヒント2

うまく共円を見つけてください


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

求長問題18

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

半円と四分円を組み合わせた図のような図形があります。青い線分の長さが$\sqrt 6$のとき、赤い線分の長さを求めてください。

解答形式

半角数字で解答してください。

中線と垂線

kusu394 自動ジャッジ 難易度:
16月前

7

問題文

$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.

$$ AB = 12, \ \ BC= 20 $$

のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.


${}$ 2026年、あけましておめでとうございます。本年もよろしくお願いいたします。
 さて、新年数日は西暦である2026を織り込んだ数学やパズルの問題をお送りします。
 初日・2日目は虫食算です。虫食算というと確定マスから埋めていき、時には場合分けや仮置きを利用するのが定番の手法ですが、僕が作る虫食算は数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるようにしています。とはいえ、解き方は自由です。お好きなようにパズルなひと時をお楽しみください。

解答形式

${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $2026 \times 101 = 204626$ → $\color{blue}{2026 \text{×} 101}$
 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)でも、絵文字や環境依存文字でもなく、全角記号の「×」でお願いします。空白(スペース)も入れる必要はありません。


${}$ 西暦2025年問題第2弾です。第1弾に引き続き虫食算で、今回は割り算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!

解答形式

${}$ 解答は2行目を「被除数÷除数」の形で入力してください。
(例) $2026 \div 102 = 19$ 余り $88$ → $\color{blue}{2026 \text{÷} 102}$
 入力を一意に定めるための処置です。数字は半角で、「÷」の演算記号はTeX記法(\div)でも、絵文字や環境依存文字でもなく、全角記号の「÷」でお願いします。空白(スペース)も入れる必要はありません。

幾何問題11/22

miq_39 自動ジャッジ 難易度:
2年前

10

問題文

円 $\omega$ 上に相異なる $2$ 点 $A,B$ がある.ただし,弦 $AB$ は $\omega$ の直径ではない.$A,B$ における $\omega$ の接線をそれぞれ $l,m$ とする.劣弧 $AB$ 上(端点を除く)に点 $P$ をとり,$P$ を通り $l$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $C$ とし,$P$ を通り $m$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $D$ とする.$l$ と直線 $BC$ の交点を $E$,$m$ と線分 $AD$ の交点を $F$ とする.また,線分 $AF$ と線分 $BE$ の交点を $X$,線分 $CF$ と線分 $DE$ の交点を $Y$ とする.$AB=\sqrt{69}$,$AC=3$,$BD=6$ がそれぞれ成り立っているとき,線分 $XY$ の長さは,互いに素な正整数 $a,c$ および平方因子を持たない $2$ 以上の整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を求めよ.

解答形式

半角数字で解答してください.

内接円の半径

nepia_nepinepi 自動ジャッジ 難易度:
12月前

7

問題文

半径$3$の円に内接する六角形$ABCDEF$ は以下の2つの条件をみたします:

四角形$ABDE, BCEF,CDFA$は長方形
周長が$15$

このとき,三角形$ACE$の内接円の$\textbf{半径}$を求めてください。

解答形式

答は非負整数$a,b$を用いて$\frac{a}{b}$と表されるので$a+b$の値を半角数字で答えてください。

求面積問題23

Kinmokusei 自動ジャッジ 難易度:
4年前

11

問題文

半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。

解答形式

半角数字で解答してください。

求面積問題21

Kinmokusei 自動ジャッジ 難易度:
4年前

6

問題文

3つの正五角形がそれぞれ1頂点ずつを共有して図のように配置されています。緑で示した三角形の面積が22のとき、赤い三角形の面積を求めてください。

解答形式

半角数字で回答してください。

求角問題6

Kinmokusei 自動ジャッジ 難易度:
5年前

8

問題文

図のように長方形や直角三角形の内接円が配置されています。青で示した角の角度を求めてください。

解答形式

度数法で求め、半角数字で0以上360未満の整数を解答してください。
※度や°などの単位は付けないでください。

求角問題9

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

図の直角三角形について、青い部分の面積と緑色の部分の面積が等しいとき、$x$で示した角度を求めてください。

解答形式

度数法で求め、単位を付けずに0以上360未満の数字を半角で解答してください。

求値問題8

Kinmokusei 自動ジャッジ 難易度:
4年前

6

問題文

共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。

※図は正確でないことに注意

解答形式

大円の半径を$R_1$、小円の半径を$R_2$とすると、$R_1:R_2=\fbox ア:\fbox イ$です。文字列 アイ を解答してください。
例:$R_1:R_2=5:2$ であれば 52 と解答

求長問題21

Kinmokusei 自動ジャッジ 難易度:
4年前

6

問題文

扇形の内部に図のように線を引きました。赤い線分の長さが$2\sqrt 5$のとき、青い線分の長さを求めてください。

解答形式

半角数字で解答してください。