正方形 $ABCD$ の辺 $BC$ 上に点 $E$ をとると,
$$BE=7,\ \ \ \ CE=5$$が成り立ちます.$E$ を中心とした半径 $7$ の円を $O$ とし,正方形 $ABCD$ の内部かつ円 $O$ の周上の点 $F$ をとると直線 $DF$ は円 $O$ の接線となりました.このとき,線分 $CF$ の長さは正整数 $a,b$ と素数 $c$ を用いて $\displaystyle{\frac{a+\sqrt{b}}{c}}$ と書けるので $a+b+c$ の値を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記
答えひらがなな訳ありませんでした、失礼しました
$\sqrt{b}$ は $d\sqrt{e}$ を $\sqrt{d^2e} $ の形で書き直した値,すなわち $b=d^2e$ の値を解答することになります.
うまく共円を見つけてください
この問題を解いた人はこんな問題も解いています