奇数が並んだ幾何のナゾ

kusu394 自動ジャッジ 難易度: 数学 > 競技数学
2024年7月11日0:28 正解数: 5 / 解答数: 6 (正答率: 83.3%) ギブアップ数: 1
初等幾何

問題文

正三角形 $ ABC$ の辺 $AB,BC,CA$ 上にそれぞれ点 $P,Q,R$ があり,
$$PQ=3,\ \ \ \ QR=5,\ \ \ \ RP=7,\ \ \ \ AB=9$$ を満たしています.このとき,線分 $AQ$ の長さは互いに素な整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$ と書けるので $a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.


ヒント1

$\triangle PQR$ に有名角が隠れていませんか

ヒント2

ある $4$ 点の共円が見つかります

ヒント3

$\triangle ABC$ の面積を $AQ$ を使って表せないでしょうか


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

中線と垂線

kusu394 自動ジャッジ 難易度:
2月前

4

問題文

$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.

$$ AB = 12, \ \ BC= 20 $$

のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

幾何作問練習2

Lamenta 自動ジャッジ 難易度:
4月前

16

問題文

$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。

解答形式

半角数字で解答してください。

幾何作問練習3改

Lamenta 自動ジャッジ 難易度:
2月前

3

問題文

$AB>AC$なる鋭角三角形$ABC$において, $C$から$AB $に下ろした垂線の足を$D$, $BC$の中点を$M$, $AM$と$CD$の交点を$E$とし, 円$BDM$と$CD$の交点のうち$D$ではない方を$F$, 円$CDM$と$AM$の交点のうち$M$ではない方を$G$とします. $CD=32$, $DM=20$, $EF=5$であるとき, $FG$の長さの$2$乗を解答してください.

解答形式

半角数字で入力してください.

図形

ammonitenh3 自動ジャッジ 難易度:
22日前

4

問題文

三角形ABCとその辺AB上にある点Dと辺CA上にある点Eが次の二つの条件を満たしている.(ただし、点D,Eは点Aとは一致しない)
 (Ⅰ)AB=13,BC=14,CA=15
 (Ⅱ)4点B,C,E,Dは共円
 このとき、「点Aを通りDEに垂直な直線」と、線分BCの交点をFとする.
 BFの長さを求めよ.

解答形式

例)この答えは、互いに素な自然数$a$,$b$を用いて$\frac{a}{b}$と書けるので、$a$+$b$の値を答えてください.

正方形と円の接線

kusu394 自動ジャッジ 難易度:
5月前

4

問題文

正方形 $ABCD$ の辺 $BC$ 上に点 $E$ をとると,
$$BE=7,\ \ \ \ CE=5$$が成り立ちます.$E$ を中心とした半径 $7$ の円を $O$ とし,正方形 $ABCD$ の内部かつ円 $O$ の周上の点 $F$ をとると直線 $DF$ は円 $O$ の接線となりました.このとき,線分 $CF$ の長さは正整数 $a,b$ と素数 $c$ を用いて $\displaystyle{\frac{a+\sqrt{b}}{c}}$ と書けるので $a+b+c$ の値を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
答えひらがなな訳ありませんでした、失礼しました

不採用幾何

sdzzz 自動ジャッジ 難易度:
3月前

10

問題文

三角形 $ABC$ があり,外心を $O$ とした時以下が成り立ちました.
$$
AB+AC=2BC,\quad AB\times AC=24,\quad AO=5
$$
この時,三角形 $ABC$ の内接円の半径の値を求めてください.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で入力してください.

簡単な幾何

Lamenta 自動ジャッジ 難易度:
4月前

14

問題文

$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。

解答形式

半角数字で解答してください。

読み間違いによる問題

katsuo.tenple 自動ジャッジ 難易度:
2月前

15

問題文

AB=36, AC=24の△ABCがあり線分ABを2:1に内分する点D, 線分ACを3:1に内分する点EをとりBEとCDの交点をPとするとAP=14であった.
このときBCの長さの2乗を求めよ。

解答形式

例)半角で解答して下さい。

階乗の和

nanohana 自動ジャッジ 難易度:
35日前

11

問題文

$$a,bは負でない整数とする。$$$$このときa!+b!=(a+b)!$$$$を満たす組(a,b)を全て求めよ。$$

解答形式

組(a,b)の個数を入力してください。

2月前

10

問題文

$\log_227$の整数部分を答えよ

積100万へのみちしるべ

kusu394 自動ジャッジ 難易度:
6月前

11

問題文

$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します.
この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように
並び替えただけの組は同一のものとみなします.

4月前

13

問題文

実数a,b,c,d,e,fが次の不等式を満たしている。
$$
a^2+b^2+c^2≦1
$$$$
b^2+c^2+d^2≦1
$$$$
c^2+d^2+e^2≦1
$$$$
d^2+e^2+f^2≦1
$$このとき$$a+b+c+d+e+f$$の最大値を求めよ。

解答形式

a+b+c+d+e+fが最大となる時の(a+b+c+d+e+f)^2の値を入力してください。