中線と垂線

kusu394 自動ジャッジ 難易度: 数学 > 競技数学
2024年8月31日20:10 正解数: 3 / 解答数: 5 (正答率: 60%) ギブアップ数: 1
初等幾何

全 5 件

回答日時 問題 解答者 結果
2025年5月14日17:44 中線と垂線 Weskdohn
正解
2024年9月14日16:11 中線と垂線 katsuo_temple
正解
2024年8月31日23:17 中線と垂線 MrKOTAKE
正解
2024年8月31日23:05 中線と垂線 MrKOTAKE
不正解
2024年8月31日20:40 中線と垂線 MrKOTAKE
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

正方形と円の接線

kusu394 自動ジャッジ 難易度:
11月前

5

問題文

正方形 $ABCD$ の辺 $BC$ 上に点 $E$ をとると,
$$BE=7,\ \ \ \ CE=5$$が成り立ちます.$E$ を中心とした半径 $7$ の円を $O$ とし,正方形 $ABCD$ の内部かつ円 $O$ の周上の点 $F$ をとると直線 $DF$ は円 $O$ の接線となりました.このとき,線分 $CF$ の長さは正整数 $a,b$ と素数 $c$ を用いて $\displaystyle{\frac{a+\sqrt{b}}{c}}$ と書けるので $a+b+c$ の値を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
答えひらがなな訳ありませんでした、失礼しました

幾何作問練習3改

Lamenta 自動ジャッジ 難易度:
8月前

4

問題文

$AB>AC$なる鋭角三角形$ABC$において, $C$から$AB $に下ろした垂線の足を$D$, $BC$の中点を$M$, $AM$と$CD$の交点を$E$とし, 円$BDM$と$CD$の交点のうち$D$ではない方を$F$, 円$CDM$と$AM$の交点のうち$M$ではない方を$G$とします. $CD=32$, $DM=20$, $EF=5$であるとき, $FG$の長さの$2$乗を解答してください.

解答形式

半角数字で入力してください.

内接円の半径

nepia_nepinepi 自動ジャッジ 難易度:
3月前

4

問題文

半径$3$の円に内接する六角形$ABCDEF$ は以下の2つの条件をみたします:

四角形$ABDE, BCEF,CDFA$は長方形
周長が$15$

このとき,三角形$ACE$の内接円の$\textbf{半径}$を求めてください。

解答形式

答は非負整数$a,b$を用いて$\frac{a}{b}$と表されるので$a+b$の値を半角数字で答えてください。

幾何作問練習2

Lamenta 自動ジャッジ 難易度:
10月前

16

問題文

$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。

解答形式

半角数字で解答してください。

10月前

6

問題文

正三角形 $ ABC$ の辺 $AB,BC,CA$ 上にそれぞれ点 $P,Q,R$ があり,
$$PQ=3,\ \ \ \ QR=5,\ \ \ \ RP=7,\ \ \ \ AB=9$$ を満たしています.このとき,線分 $AQ$ の長さは互いに素な整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$ と書けるので $a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

図形

ammonitenh3 自動ジャッジ 難易度:
6月前

6

問題文

三角形ABCとその辺AB上にある点Dと辺CA上にある点Eが次の二つの条件を満たしている.(ただし、点D,Eは点Aとは一致しない)
 (Ⅰ)AB=13,BC=14,CA=15
 (Ⅱ)4点B,C,E,Dは共円
 このとき、「点Aを通りDEに垂直な直線」と、線分BCの交点をFとする.
 BFの長さを求めよ.

解答形式

例)この答えは、互いに素な自然数$a$,$b$を用いて$\frac{a}{b}$と書けるので、$a$+$b$の値を答えてください.

16月前

4

問題文

三角形 $ABC$ において,$A,B,C$ から対辺に下ろした垂線の足を $D,E,F$ とし,三角形 $ABC$ の垂心を $H$ としたところ,$DE=9,DF=8,DH=7$ となりました.
このとき,$AH$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

文化祭算数問題 3

sta_kun 自動ジャッジ 難易度:
7月前

13

問題文

四角形 $ABCD$ について,線分 $BD$ 上に点 $E$ を取ると,$AE=BD$ で,角 $EAD=$ 角 $AED=$ 角 $EBC=$ 角 $BCE=40°$ が成り立ちました.このとき角 $BDC$ は何度ですか?

解答形式

半角数字で解答してください.

7月前

3

問題文

$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする
$f(x)$ が最小値を取るときの $x$ の値を求めよ

解答形式

解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください

いつものking property(に似た)問題

nps 自動ジャッジ 難易度:
2月前

1

問題文

∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。

解答形式

解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8

求面積問題26

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

2つの正方形が図のように配置されています。赤と青の面積の差が$11$のとき、紫と橙の面積の差を求めてください。

解答形式

半角数字で解答してください。

ゴールデンタイム

katsuo.tenple 自動ジャッジ 難易度:
8月前

9

問題文

時刻a時b分について、100a+b.60a+bがどちらも平方数になるような時刻について、
abの総和を求めよ。
但し0時00分から23時59分までとする。

解答形式

半角で解答して下さい。