$n^2-n+1$が平方数となるような非負整数$n$を全て求めよ。
$n$を小さい順に改行して半角で解答して下さい。 例)$n=3,7,9$の場合 3 7 9 と解答して下さい。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$A$ さんを含む $10$ 人の選手がゲームの格ゲー大会総当たり形式で行いました. $A$ さん以外の $9$ 人の選手は以下の条件を満たしているとき, $A$ さんの勝利した回数としてあり得るものの総和を求めてください. しかし,引き分けは考えないものとします.
非負整数を半角数字で答えてください.
$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。
半角数字で解答してください。
$n^4+4n^2-38n+69$ が平方数となるような正整数 $n$ の総和を求めてください.
半角数字で入力してください.
実数 $x,y$ が $\bigg\{\begin{aligned} 20x+12y=20 \\ 23x+31y=24 \end{aligned}$ の $2$ 式を満たすとき,$2023x+1231y$ の値を求めて下さい.
半角数字で解答してください.
$\text{n-テトロミノ}$とは、正方形を四つ、下のようにつなげた図形です。
orangekidくんはこの図形が大好きなので、下の図のような形をした画用紙からなるべく多くの$\text{n-テトロミノ}$を切り出したいです。 $\text{n-テトロミノ}$を裏返しの状態で切り出してもよいものとするとき、orangekidくんは最大何個の$\text{n-テトロミノ}$を切り出せるでしょうか。 「個」はつけずに、整数値のみで答えてください。
$1$ 以上 $100000$ 以下の整数から無作為に1つ選ぶとき,全ての桁の数がそれぞれ素数になる確率は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せます.$a+b$ を解答してください.
例えば,$23$ は各桁の数が $2$ と $3$ で,これは全ての桁の数が素数になります. $17$ は各桁の数が $1$ と $7$ ですが,$1$ は素数ではないので全ての桁の数が素数にはなりません.
非負整数を半角で回答してください。
問題文を一部変更しましたが答える内容は変わっていません。
一辺の長さが $12$ の正方形 $ABCE$ の外部に点 $D$ を、三角形 $CDE$ が正三角形になるようにとります。 正方形 $ABCE$ の外接円と直線 $DE$ の交点のうち $E$ でない方を $F$ とするとき、$AF^2$ の値を解答してください。
半角数字で入力してください。
方程式 $e^{nx}+x-2=0$ の正の解を$\alpha_n$とおきます.極限$\displaystyle \lim_{n\to \infty} (1+\alpha_n)^n$を求めて下さい.
例)半角数字で解答して下さい.
関数$f(x,y)=x²+y²-2x+4y+1$の最小値とそのときの$x,y$の値を求めよ。 ただし、$x,y$はいずれも実数とする。
x=𓏸𓏸,y=𓏸𓏸で、最小値𓏸𓏸と答えてください 数字は全て半角で答えてください
正整数 $n$ を与えたところ,以下の等式をみたす実数 $x$ がちょうど $4$ つ存在しました. $$x^2 - 18\sqrt{n}|x| - 30n + 1110 = 0$$$n$ のとり得る値の総和を求めて下さい.
半角英数にし,答えとなる正整数値を入力し解答して下さい.
凸四角形 $ABCD$ において, $$AB=BD=7 ,BC=5,CD=4, 2∠ACB+∠ACD=180°$$
が成り立ちました.このとき,線分 $AD$ の長さは互いに素な自然数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので $a+b$ を解答してください.
半角数字で解答してください. 不備等あれば教えて下さい。
自然数a b c について abc-ab-a=17 a<b<c となる自然数のa b c の組の数を答えなさい
半角数字で答えてください