$(0,0),(4,0),(0,4),(4,4)$を頂点とする正方形を、頂点が全て格子点上にある三角形4つに分割する方法はいくつありますか。 回転や裏返しをして同じ形になるものも区別するものとします。
半角数字で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
4x4のマス目のうち1つを、更に4x4に分割します。いくつかのマスで長方形を作るとき、何種類の長方形を作れますか。? 但し、同型でも場所が異なるなら違う種類と見なします。
4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか? 但し、「ループの一部分である」とは、 全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。
4x4のマス目のうち、0個以上のマスを選んで1つずつ地雷を置き、すべてのマスに周囲8マス(自身を含まない)の地雷の数を書きます。 地雷を置くすべてのパターンにおいて書かれている数字の総和を求めてください。
4x4のマス目を1x2のタイル8枚で敷き詰める方法は何通りありますか?
4x4のマス目を境界線で区切り、14分割する方法は何通りありますか?
$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。
$n$の値を半角で入力してください。
垂心を$H$とする鋭角三角形$ABC$があり、$AB=9,AC=11,CH=7$を満たしています。 $△AHC$の外接円を$Γ$とし、直線$BH$と$Γ$の交点のうち$H$でない点を$D$として、線分$CD$の中点を$M$とします。
線分$HM$と線分$AC$の交点を$E$としたときの、$DE$の長さの$2$乗を求めてください。
求める値は互いに素な整数$a,b$を用いて$\dfrac{a}{b}$と表されるので、$a+b$を解答してください。
$自然数Xについて、Xの各位の数字を足し合わせた値をk(X)とおく。$ $4桁の自然数A,Bにおいて$$$ \begin{eqnarray} \frac{k(A)}{k(B)}=\frac{A}{B}=n \end{eqnarray} $$$ (nは2以上の整数)$ $のとき、Aの取りうる値は何個あるか。$ 半角数字のみで答えよ
$\sqrt[abc]{a! + b! + c!}$が整数となるような正の整数の組$(a,b,c)$をすべて求めよ.
すべての組に対する $a+b+c$ の値の総和を解答してください。論証は解説を参照してください。
$a^2+b^2+c^2+d^2+e^2=13053769$を満たす自然数$(a,b,c,d,e)$の組を1つ求めよ。ただし、$a<b<c<d<e$とする。
a,b,c,d,e,fの順で、間を半角スペースで区切り解答してください。 (例)$(a,b,c,d,e)=(1,2,3,4,5)$だった場合 →1 2 3 4 5
$ a!=b^{2}+2となる自然数a,整数bについて、 $ $ k(a,b)=a+bとおく。 $ $ k(a,b) の値として考えられるものは何個あるか。 $
円$O_1,O_2,O_3$は点$O$を中心とする同心円で、この順に半径が小さい。円$O_1,O_2,O_3$の周上に、それぞれ点$A,B,C$をとるとき、$△ABC$の内部または周上に点$O$が含まれる確率を求めよ。
0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。