$(0,0),(4,0),(0,4),(4,4)$を頂点とする正方形を、頂点が全て格子点上にある三角形4つに分割する方法はいくつありますか。 回転や裏返しをして同じ形になるものも区別するものとします。
半角数字で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
4x4のマス目のうち1つを、更に4x4に分割します。いくつかのマスで長方形を作るとき、何種類の長方形を作れますか。? 但し、同型でも場所が異なるなら違う種類と見なします。
4x4のマスのうちいくつかに、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか? 但し、「ループの一部分である」とは、 全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。
4x4のマス目のうち、0個以上のマスを選んで1つずつ地雷を置き、すべてのマスに周囲8マス(自身を含まない)の地雷の数を書きます。 地雷を置くすべてのパターンにおいて書かれている数字の総和を求めてください。
4x4のマス目を1x2のタイル8枚で敷き詰める方法は何通りありますか?
4x4のマス目を境界線で区切り、14分割する方法は何通りありますか?
$4桁の数Xについて、Xの各位の数字を1桁ずつ足し合わせた和をk(X)とおく。$ $4桁の数A,Bにおいて$$$ \begin{eqnarray} \frac{k(A)}{k(B)}=\frac{A}{B}=n \end{eqnarray} $$$ (nは2以上の整数)$ $のとき、Aの取りうる値は何個あるか。$ 半角数字のみで答えよ
$$ \int_{0}^{2}\frac{log_{2}{4}^x}{log_{2}{8}}dx $$
$AB=2,AC=1$ をみたす三角形 $ABC$ の垂心を $H$,内心を $I$,外接円を $\Gamma$ とします.直線 $AH$ と $BI$ の交点を $D$ とし,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $X$ とすると,$AX=BX$ となりました.このとき,辺 $BC$ の長さを求めてください.ただし,求める値は,互いに素な正整数 $a,c$ と平方因子をもたない正整数 $b$ を用いて $\dfrac{a+\sqrt{b}}{c}$ と表されるので,$a\times b\times c$ を解答してください.
円 $\Gamma$ に内接する凸四角形 $ABCD$ において,直線 $AB,CD$ の交点を $S$,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $T$ とします.$S,C,D,T$ がこの順に並んでおり,かつ, $$AB=10,SC=16,TD=5,BC\cdot AD=32$$ が成立しているとき,線分 $SB$ の長さを求めてください.ただし求める長さは,正整数 $a,b$ を用いて $\sqrt{a}-b$ と表されるので,$a+b$ の値を解答してください.
正の実数に対して定義され,正の実数値を取る関数 $f$ であって,任意の正の実数 $x,y$ に対して, $$ f(x)f(yf(x))=2024f(x+2024y) $$ を満たすもののうち, $f(1)$ が整数になるものについて,$f(2)$ の整数部分としてありうる数はいくつありますか.
半角数字で解答してください.
一辺の長さが1である正方形を $n$ 個、頂点が合うように辺同士でつなげてできる図形を $n$-オミノ とする。ただし、$n=1$ の場合は1つの正方形である。また、$n$-オミノが多角形をなすとき($n$-オミノで囲まれた領域が存在しないとき)、これを $n$-オミノ多角形 とする。
$\rm{S_n}$が$n$-オミノ多角形であるとき、$\rm{S_n}$の辺の数が2024となるような $n$ の最小値を求めよ。
答えは整数となるので、半角で入力してください。
$$ \sqrt{1024^\frac{log_{l}{l}^2}{log_{m}{m}^4}} $$