文化祭算数問題 4

sta_kun 自動ジャッジ 難易度: 数学 > 競技数学
2024年9月24日23:31 正解数: 5 / 解答数: 6 (正答率: 83.3%) ギブアップ数: 0

全 6 件

回答日時 問題 解答者 結果
2024年12月17日20:25 文化祭算数問題 4 ゲスト
正解
2024年10月4日23:41 文化祭算数問題 4 MI6174
正解
2024年9月27日13:05 文化祭算数問題 4 MrKOTAKE
正解
2024年9月25日11:36 文化祭算数問題 4 Tehom
正解
2024年9月25日11:34 文化祭算数問題 4 Tehom
不正解
2024年9月25日9:32 文化祭算数問題 4 Furina
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

文化祭算数問題 6

sta_kun 自動ジャッジ 難易度:
3月前

6

問題文

角 $BAC=$ 角 $BCD=60°$ なる $AD\parallel BC$ の台形 $ABCD$ について,以下が成立しました.
$$ AC-AB=7 \mathrm{cm},\quad BC-CD=3 \mathrm{cm}$$
このとき $BC$ の長さは何 $\mathrm{cm}$ ですか?ただし,求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので $a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

文化祭算数問題 5

sta_kun 自動ジャッジ 難易度:
3月前

5

問題文

正方形 $ABCD$ の辺 $CD$ 上に点 $E$ をとり,直線 $AE$ と $BC$ の交点を $F$,$AE$ と $BD$ の交点を $G$ とすると,$AG:EF=1:2$ が成立しました.このとき,角 $AFB$ は何度ですか?ただし,解答すべき値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

文化祭算数問題 1

sta_kun 自動ジャッジ 難易度:
3月前

9

問題文

角 $C$ が直角となるような三角形 $ABC$ の辺 $BC$ 上に点 $D$ をとると,角 $DAC:$ 角 $BAD=1:2$,$AD$ の長さは $3 \mathrm{cm}$,$AB$ の長さは $5 \mathrm{cm}$ となりました.このとき,$BD:DC$ を求めてください.ただし,求める比は互いに素な正整数 $a,b$ を用いて $a:b$ と表せるので $a+b$ の値を解答して下さい.

解答形式

半角数字で解答してください.

文化祭算数問題 3

sta_kun 自動ジャッジ 難易度:
3月前

13

問題文

四角形 $ABCD$ について,線分 $BD$ 上に点 $E$ を取ると,$AE=BD$ で,角 $EAD=$ 角 $AED=$ 角 $EBC=$ 角 $BCE=40°$ が成り立ちました.このとき角 $BDC$ は何度ですか?

解答形式

半角数字で解答してください.

文化祭算数問題 2

sta_kun 自動ジャッジ 難易度:
3月前

11

問題文

四角形 $ABCD$ について,角 $DBC=20°$,角 $BDC=90°$,角 $ADB=40°$,$AD:BC=1:2$ が成り立ちました.このとき角 $ABD$ は何度ですか?

解答形式

半角数字で解答して下さい.

G

kusu394 自動ジャッジ 難易度:
52日前

9

問題文

$\triangle{ABC}$ について直線 $BC$ 上に $W,B,C,E$ の順と並ぶように点 $W,E$ を取ると以下のことが成立しました.

  • $AC=35, AW=45,BW=36$
  • $BC:CE=1:8$
  • $\triangle AWC$ は鈍角三角形であり,その面積は$72\sqrt{111}$

このとき $\triangle{BAE}$ の外心を $O$ とすると,互い素な正整数 $a,b$ を用いて,
$$\triangle{BAE}:\triangle{WAO}=a:b$$
と面積比が表せるので $a+b$ の値を解答してください.

解答形式

半角整数で入力してください.

PGC005 (D)

pomodor_ap 自動ジャッジ 難易度:
57日前

13

問題文

$AB<AC$ なる三角形 $ABC$ について,$C$ を通り $B$ で直線 $AB$ に接する円 $\gamma$ と線分 $AC$ の $C$ でない交点を $D$,$D$ を通り $A$ で直線 $AB$ に接する円 $\omega$ と $\gamma$ の $D$ でない交点を $E$ とします.いま,三角形 $ABC$ の外心を $O$ とすると,$$OD=OE, DE=2, BC=11$$ が成り立ちました.線分 $AC$ の長さの二乗を求めてください.

E

kusu394 自動ジャッジ 難易度:
52日前

24

問題文

holoXのずのーである『博衣こより』はとある実験に成功し、同じholoXのメンバーである『ラプラス・ダークネス』『鷹嶺ルイ』『沙花叉クロヱ』『風真いろは』と自分自身をそれぞれ $6$ 人ずつに分身させてしまいました.
分身させた計 $30$ 人のうち $6$ 人を選び,下記の条件に沿って左右 $1$ 列に並べる方法は何通りありますか.

  • 『博衣こより』と『沙花叉クロヱ』は隣り合ってはならない.(こよクロ(『博衣こより』と『沙花叉クロヱ』のユニット)は解散しているため)
  • 『ラプラス・ダークネス』の左右のどちらか隣に『鷹嶺ルイ』がいないといけない(『ラプラス・ダークネス』は『鷹嶺ルイ』が近くにいないと不安になってしまうため.しかし,『鷹嶺ルイ』の隣に『ラプラス・ダークネス』がいなくても良い.)

解答形式

半角整数で入力してください.

幾何問題24/1/8

miq_39 自動ジャッジ 難易度:
12月前

9

問題文

$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください。

Q3.素数

34tar0 自動ジャッジ 難易度:
3月前

10

問題文

素数 $p$ を用いて表される整数 $p-4, p^2-6, p^3-26$ が全て素数となるような $p$ の総和を求めよ。

解答形式

算用数字で解答してください。

D

nmoon 自動ジャッジ 難易度:
2月前

10

問題文

4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:

$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$

解答形式

互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

N3

orangekid 自動ジャッジ 難易度:
7月前

12

問題文

整数$x, y, z$は$0<x<28,0<y, 0\leq z<20$ と $37x-13y=2z$ を共に満たします。このような整数の組$(x,y,z)$はいくつあるでしょう?

解答形式

半角数字で入力してください。