次の関数の導関数y‘=dy/dxを求めなさい

OyoYo 採点者ジャッジ 難易度: 数学 > 高校数学
2024年10月1日20:33 正解数: 1 / 解答数: 1 (正答率: 100%) ギブアップ不可

問題

y=sin2x/1+cos2x


ヒント1

商の導関数の公式を使います。


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

第1問

tsukemono 採点者ジャッジ 難易度:
23日前

5

第1問

次の空欄$(ア)~(オ)$に当てはまる数字をそれぞれ答えよ。
数列{$a_{n}$}を次のように定める。
$$a_1=a_2=1,a_{n+2}-a_{n+1}+a_n=0 (nは自然数)$$この数列の一般項は

$a_n=\frac{(ア)}{\sqrt{(イ)}}$$sin\frac{nπ}{(ウ)}$
である。
また、$a_{2025}=(エ)$であり、$$\sum_{n=1}^{2025}{a_n}=(オ)\quad$$である。

Combination

Weskdohn 自動ジャッジ 難易度:
16月前

9

問題文

$X$($0<X<2025$)個の玉から$Y$($0<Y<2025$)個を同時に取り出す操作を考える.
この操作が成り立つ$X,Y$について,玉の取り出し方の総和を求めなさい.

但しボールは互いに区別できるものとする.

解答形式

答えは$a^b+c(a,b,c∈ℤ)$通りと書けます.$a,b,c$として様々なものがありますが,
$a+b+c=Z(Z∈ℤ ,Z>0)$について$MIN(Z)$の値を求めて下さい.

追記:8/6日問題文の訂正を行いました.もし,もとの問題文のせいでミスしたという方がいましたら,大変申し訳ありません.

第2問

tsukemono 採点者ジャッジ 難易度:
23日前

5

第2問

次の空欄$(ア)~(エ)$に当てはまる数字をそれぞれ答えよ。
関数$f(x)$を$$f(x)=\frac{log(x)}{x}$$と定める。
$f(x)$は、$x=(ア)$で、極大値$\frac{(イ)}{e}$をとる。
また、$$\int_1^e{f(x)dx}\quad$$
の値は$\frac{(ウ)}{(エ)}$である。

ただし、対数は自然対数を表し、$e$は自然対数の底とする。

第5問

tsukemono 採点者ジャッジ 難易度:
23日前

6

第5問

実数$x,y$が不等式$x^2+y^2=1$をみたすとき、$x+y$の最大値を求めよ。

ハロウィンの体育

GaLLium31 自動ジャッジ 難易度:
7月前

19

問題文

正整数 $n$ に対して $n^{10n}$ を $31$ で割ったあまりを $f(n)$ としたとき,
$$\sum_{k=1}^{12000} f(k)$$
の値を求めてください.

解答形式

半角英数字で回答してください.

そらさんの新体力テスト

akatukisola 自動ジャッジ 難易度:
19月前

7

問題文

そらさんとあかつきさんは地点Aから東にある地点Bに向かって進みます。

そらさんは2秒間東に毎秒4m進み、1秒間西に毎秒2m進むを繰り返します。

あかつきさんは毎秒Xm東に進みます。

そらさんとあかつきさんは同時に地点Aを出発し、20秒後に同時に地点Bに到着しました。

Xはいくつですか?

解答形式

Xは互いに素な自然数A,Bを用いてA/Bと表せるので、A+Bを回答してください。

素因数分解だよ

udonoisi 自動ジャッジ 難易度:
3月前

11

問題文

$56076923$ の素因数の総和を求めてください.
ただし, 重複する素因数は異なるものとして考えます.

解答形式

例)非負整数を答えてください.

Qualifier 9

seven_sevens 採点者ジャッジ 難易度:
11月前

12

$$\int\sqrt{x}dx$$

WMC(F)

Weskdohn 自動ジャッジ 難易度:
6月前

12

問題文

次の虫食い算について,SUKEN=?

解答形式

半角数字で入力して下さい.
但しS≠E≠I≠K≠O≠U≠Nとします.

Qualifier 2

seven_sevens 採点者ジャッジ 難易度:
11月前

14

$$\int ^{\frac{3}{2}} _{-\frac{5}{3}}{(6x^2+x-15)}dx$$

WMC(A)

Weskdohn 自動ジャッジ 難易度:
6月前

50

問題文

$6106$以下の正整数$N$について,以下のようにスコアを定める.
スコア:整数$a,b(a≦b)$の組で,$ab=N$を満たすようなものの個数.
スコア$=2$となるような$N$は何通りありますか.
但し,以下に示す10000以下の素数表を用いてもいい.
http://allthingsuniverse.com/jp/prime/10000.html

解答形式

半角数字で入力してください.

WMC(C)

Weskdohn 採点者ジャッジ 難易度:
6月前

15

問題文

SKG学院の学園祭では,下のような$5$マス$\times5$マスの盤を用いて,次のようなゲームを行う.

・お客さんは,12個の碁石を全てマスの上に置く.
・一マスには一つまでしか碁石は置けない.
・この時スコアを次のように定める.
スコア:各行,各列について,碁石が偶数個置かれているものの個数.

スコアが10となるような,碁石の置き方の一例を答えよ.

解答形式

置かないマスは0,置くマスは1で表す.
例えば,一番右上,一番左上にのみ碁石を置く.この置き方は下のように書くものとする.

10001
00000
00000
00000
00000

またこの時,スコアは8である.