P3

Lamenta 自動ジャッジ 難易度: 数学 > 競技数学
2024年10月26日21:00 正解数: 13 / 解答数: 18 (正答率: 72.2%) ギブアップ数: 1
この問題はコンテスト「LGC」の問題です。

問題文

$\angle B=90^{\circ}$なる直角三角形$ABC$において,$AC$の中点を$M$とすると,$BC$上(端点を除く)に$AB=MP=MQ$なる異なる$2$点$P$,$Q$をとることができ,$B$,$P$,$Q$,$C$はこの順にあった.また,$B$を直線$MQ$について対称移動した点を$X$とすると,$AX=11$,$PX=18$を満たした.このとき,$BC$の長さの$2$乗を求めよ.

解答形式

求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せるので,$a+b$を半角数字で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

P1

Lamenta 自動ジャッジ 難易度:
5日前

24

問題文

鋭角三角形$ABC$において,外心を$O$とし,$\angle OAB$の二等分線と$BC$の交点を$D$とすると,$BD=OD$,$\angle AOD >90^\circ$を満たした.$AO=7$,$AD=10$であるとき,$BC$の長さを求めよ.

解答形式

求める値は正整数$a,b$を用いて$a+\sqrt b$と表せるので,$a+b$を半角数字で解答してください.

P4

Lamenta 自動ジャッジ 難易度:
5日前

22

問題文

$\triangle ABC$において,内心を$I$,重心を$G$とし,$I$ から$BC$,$CA$,$AB$に下ろした垂線の足をそれぞれ$D$,$E$,$F$とすると,$G$は$EF$上にあり,$IG=1$,$BD:DC=3:5$を満たした.このとき,$\triangle ABC$の周長の$2$乗を求めよ.

解答形式

求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表されるので,$a+b$を半角数字で解答してください.

P5

Lamenta 自動ジャッジ 難易度:
5日前

9

問題文

外接円の直径が$5$,$AB:AD=5:7$の内接四角形$ABCD$において,$\triangle ABC$の内心,$B$傍心をそれぞれ$I_1$,$I_B$とし,$\triangle ADC$の内心,$D$傍心をそれぞれ$I_2$,$I_D$とすると,$I_1$,$I_2$,$I_B$,$I_D$は同一円周上にあり,$I_1I_B\cdot I_2I_D=40$を満たした.$AC$の中点を$M$としたとき,$BM+DM$を求めよ.

解答形式

求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表されるので,$a+b$を半角数字で解答してください.

400G

poino 自動ジャッジ 難易度:
4月前

9

問題文

$AB=13,BC=14,CA=15$ を満たす三角形 $ABC$ において、外心を $O$、辺 $AB$ の中点を $M$、辺 $AC$ の中点を $N$、$A$ から辺 $BC$ に下ろした垂線の足を $D$ とします。また、円 $DMN$ と $AD$ の交点を $X$、$MN$ について $X$ と対称な点を $Y$ とします。このとき四角形 $BCOY$ の面積を求めてください。

解答形式

半角数字で入力してください。

300G

eq_K 自動ジャッジ 難易度:
4月前

7

問題文

$4$ 点 $A,B,C,D$ は同一円周上にあり,その内部(辺上を含まない)に点 $P$ をとります.
また,線分 $AP,BP,CP,DP$ の垂直二等分線をそれぞれ $a,b,c,d$ とします.
$a,b$ の交点を $E$,$b,c$ の交点を $F$,$c,d$ の交点を $G$,$d,a$ の交点を $H$ とすると,$4$ 点 $E,F,G,H$ は同一円周上にあり,四角形 $EFGH$ の二本の対角線は $P$ で交わりました.
 そして,以下が成立しました:
$$HP=5,\quad HE=11,\quad EF=16$$
 このとき,$HG$ の長さの二乗は互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.

解答形式

非負整数を半角で入力してください.

交わる円と三角形

tb_lb 自動ジャッジ 難易度:
13月前

19

【補助線主体の図形問題 #115】
 今週の図形問題です。今回は重めの問題にしてみました。とはいえ、補助線が活躍するのはいつも通りです。じっくり腰を据えて挑戦してください!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

自作問題1

mahiro 自動ジャッジ 難易度:
12月前

14

問題文

$$\angle{ADB}=\angle{ADC}=\angle{CDB}=90^°$$なる四面体 $ABCD$ の外接球に関して、体積を $V$ 表面積を $S$ としたとき、非負整数 $p$ を用いて、$V=p\pi,S=p\pi$ が成り立ちました。
このとき、四面体 $ABCD$ の体積の最大値の2乗を求めてください。

解答形式

半角数字で入力して下さい。

新春問題

arc_sin 自動ジャッジ 難易度:
10月前

22

問題文

2024^2023の正の約数の個数はいくつか?

解答形式

半角で回答
例)100

9月前

17

問題文

下図で、三角形ABCは直角二等辺三角形、三角形BCDは直角三角形です。CDの長さが3cm、DBの長さが11cmのとき、三角形ABCの面積は何㎠ですか。

解答形式

半角数字で回答してください。
例)10


${}$ 西暦2024年問題第6弾です。いよいよ整数問題のお出ましとなりました。ある程度は手を動かす必要がありますが、あることに気づけば調べる候補をぐっと減らすことができます。約数の個数を求めるのが面倒な方はWolfram|Alpha https://www.wolframalpha.com なども併用して構いません。

解答形式

${}$ 解答は求める$n$の最小値をそのまま入力してください。
(例)$n=2106$ → $\color{blue}{2106}$

15月前

16

【補助線主体の図形問題 #109】
 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

幾何問題24/1/8

326_math 自動ジャッジ 難易度:
9月前

8

問題文

$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください。