正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。 ただし、図中の青点はそれぞれの正方形の対角線の交点です。
半角数字で解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。
三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。 $$ \frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B} $$
最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。 ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。
正六角形2つが図のように配置されています。赤い線分と青い線分の長さの比が1:4であるとき、緑で示した角Yの角度を求めてください。 ただし、図中"center"で示した点は正六角形の外心です。
0~360までの半角数字で、「°」や「度」をつけずに解答してください。
正七角形2つが図のように配置されています。 赤色の線分の長さが7のとき、青色の線分の長さを求めてください。
図中、同じ印のついている辺・角同士は等しいです。 緑の凹四角形の面積が10のとき、青の三角形の面積を求めてください。
図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。
面積は、 $$ \fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}} $$ となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。
例$$ 面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答 $$
【補助線主体の図形問題 #017】 今回は方針により計算量が変化する問題を用意しました。とはいえ暗算で解くには幾分厳しいです。簡単な計算用紙&筆記具をお手元にご用意の上で挑戦してみてください。
${ \def\cm{\thinspace \mathrm{cm}} \def\mytri#1{\triangle \mathrm{#1}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
$△ABC$は鋭角三角形とします。次に、$A,B,C$から$BC,CA,AB$におろした垂線の足をそれぞれ$X,Y,Z$とし、$△ABC,△XYZ$の内接円の半径をそれぞれ$r,r'$とします。このとき、次の式の最小値を求めてください。 $$ \frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2} $$
$$ \frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}\geq\frac{[ア]\sqrt{[イ]}}{[ウ]}=(最小値) $$ となります。$[ア]+[イ]+[ウ]$を半角数字で解答してください。 ただし、$[ア],[イ],[ウ]$には自然数が入ります。また、分数部分は既約分数に、根号内の数字は最小となるようにしてください。
問題文を3つの半円が図のように配置されています。赤い部分の面積が9、緑の部分の面積が5のとき、青い部分の面積を求めてください。
正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。
【補助線主体の図形問題 #006】 投稿日である今日3月14日は、円周率$\pi$の近似値 $3.14$ になぞらえて「円周率の日」と定められています。ということで「円周率の日」記念に円多めの問題を用意しました。 補助線が活躍するのはいつも通りです。ちょっとした知識があると暗算で処理可能ですが、そうでなくとも大した計算量ではありません。どうぞ円まみれのお時間を楽しんでいただければ幸いです。
${ \def\cm{\thinspace \mathrm{cm}} \def\mytri#1{\triangle \mathrm{#1}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
直角二等辺三角形と、その頂角を通る円が図のように配置されています。青で示した線分の長さを求めてください。