$10^{12}$ 以下の正整数であって,$9$ の倍数または $10$ 進法表記した時どこかの桁に $9$ が現れる数はいくつありますか?
非負整数で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
冨安四発太鼓保存会は冨安四発太鼓の競技化を進めており、全ての曲の長さは $1$ 単位時間と定められました。 冨安四発太鼓のスコアは次のように定められています。 曲が開始した時刻を $0$ とし、太鼓が叩かれた時刻を小さい順に $t_1,t_2,t_3,t_4$ とした時に、スコアは $t_1^{39}t_2^{71}t_3^{94}t_4^{104}$ と定められます。 フニャオ君は曲の中で太鼓をランダムに $4$ 回叩きます。正確には区間 $[0,1]$ から実数を一様ランダムに選ぶという行為を独立に $4$ 回行い選ばれた実数を小さい順に並べ$t_1,t_2,t_3,t_4$ とした時、時刻 $t_1,t_2,t_3,t_4$ に太鼓を叩きます。 この時、フニャオ君のスコアの期待値を求めてください。
答えは互いに素な正整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので $a+b$ の値を求めてください。
周長が $10^5$ であり全ての辺の長さが整数であるような三角形の内接円の面積の総和を求めてください。
厳密な問題文 $a+b+c=10^5$ が成り立ち尚且つ各辺の長さが $a,b,c$ である三角形が存在するような順序付いた正整数の組 $(a,b,c)$ 全てについて各辺の長さが $a,b,c$ であるような三角形の内接円の面積の総和を求めてください。
答えは互いに素な正整数 $a,b$ を用いて$\frac{a}{b}\pi$ と表せるので、$a+b$ の値を解答してください。
整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。
$x \equiv p \pmod{9797}$ $x \equiv 11p + 69 \pmod{9991}$
この条件を満たす最小の素数 $p$ を求めよ。
半角左詰め
1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ. (ただしpは素数とする)
(半角の自然数が答え)
集合 $\{ 1,2,...,20 \}$ を $X$ とおきます。 全射である関数 $f:X \to X$ であって以下の条件を満たすものはいくつありますか? $n< 7$ を満たす正整数全てについて、ある正整数 $k$ が存在して $f^k(n)>11$ が成立する。 補足: $f^n$ は $f$ の $n$ 回合成です。
非負整数で解答してください。
1から100までの整数の中から異なる3つの整数を選び、$a<b<c$ とします。これらの3つの整数が等差数列をなすような選び方は何通りありますか?
半角英数字で解答してください。
$p=3, \quad q=5, \quad r=7$
$X = p^q + q^p$ $Y = q^r + r^q$ $Z = r^p + p^r$
$N = X^p + Y^q + Z^r$
このとき、$N$を$105$で割った余りを求めよ。
$(1)$ 集合 $S_n=\{nx\mid x^3\leqq 2x^2+5x-6\}$ に対し,整数 $k\notin\overline{S_1\cap S_2}\cup S_3$ は何個あるか. $(2)$ $3$ 桁の素数は $200$ 個未満か.
命題は真なら $1$,偽なら $0$ として,$(1),(2)$ の和を半角数字で入力してください.
₁₃₅C₃₀を7で割った余りを求めてください。
半角数字で入力してください。
正整数 $3$ つの集合 $S$ であって,以下を同時にみたすものは全部でいくつありますか?
半角英数にし,答えとなる非負整数値を入力し解答して下さい.
$P(x)$ は整数係数の monic な (最高次の係数が1の) 3次多項式 であるとする。方程式 $P(x) = 0$ は、相異なる3つの整数解を持 つことが分かっている。 $P(0)=6$ $P(1)=4$ のとき、$P(4)$の値を求めよ。
半角でスペースなし
$1$ 以上 $15$ 以下の整数の組 $(a, b, c)$ であって $$(2a + 2b + 2c - 33)^2 = (|2a - 9| + |2b - 11| + |2c - 13|)^2$$
をみたすものは全部でいくつありますか?