シンプルな幾何

MrKOTAKE 自動ジャッジ 難易度: 数学 > 競技数学
2025年1月14日11:32 正解数: 4 / 解答数: 4 (正答率: 100%) ギブアップ数: 0

問題文

鋭角三角形$ABC$があり外心を$O$とする.直線$BO$と$AC$の交点を$D$とおくと$BC=BD,DO=5,AD=6$であったので$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

2022文化祭

Kta 自動ジャッジ 難易度:
4日前

2

問題文

三角形 $ABC$ について,辺 $BC,CA,AB$ の中点をそれぞれ $D,E,F$ とし,三角形 $ABC, DEF$ の垂心をそれぞれ $H_1, H_2$ とすると,以下が成立しました.$$H_1H_2=3\sqrt{3},\quad DH_2=1,\quad \angle{H_1H_2D}=150^{\circ}$$このとき,三角形 $ABC$ の面積の $2$ 乗の値を求めてください.

解答形式

半角数字で入力してください。

B

Furina 自動ジャッジ 難易度:
2月前

16

問題文

一辺の長さが $5$ の正方形 $ABCD$ の辺 $AB$ 上(端点は除く)に点 $P$ をとります.三角形 $ACP$ の外接円と三角形 $BDP$ の外接円が $P$ でない点 $Q$ で交わり,$DQ=4$ となりました.このとき,線分 $PQ$ の長さを求めてください.ただし,求める長さは,互いに素な正整数 $a,c$ および平方因子をもたない正整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で入力してください。

タイル塗り

G414xy 自動ジャッジ 難易度:
4月前

5

問題文

縦4列、横4行の16マスのうち、いくつかに色を塗ります。塗られるマスの数が列ごとに相異なり、行ごとに相異なる(但し、列と行で塗られる数が一致しても良い)、場合、塗り方は何通りありますか?

解答形式

半角数字で入力してください。

8月前

5

問題文

四角形$ABCD$があります.線分$AC$上に点$P$を,線分$BP$上に点$Q$を,線分$DP$上に点$R$を取ります.直線$AQ$と線分$BC$,直線$CQ$と線分$AB$,直線$AR$と線分$CD$,直線$CR$と線分$AD$の交点をそれぞれ$S,T,U,V$とします.
$$\triangle BSA=(四角形BSPT)+8=\triangle BCT+12
\\\\\triangle AUD =30,\triangle CDV=25$$
が成り立つとき四角形$DVPU$の面積を求めてください.

解答形式

求める値は互いに素な自然数$p,q$を使って$\cfrac{q}{p}$と表されるので$p+q$の値を答えてください.

(変更 2024/6/27 ヒントを変えました.解説を未正解者も見れるように変更しました.)

N3

orangekid 自動ジャッジ 難易度:
7月前

12

問題文

整数$x, y, z$は$0<x<28,0<y, 0\leq z<20$ と $37x-13y=2z$ を共に満たします。このような整数の組$(x,y,z)$はいくつあるでしょう?

解答形式

半角数字で入力してください。

求値問題8

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。

※図は正確でないことに注意

解答形式

大円の半径を$R_1$、小円の半径を$R_2$とすると、$R_1:R_2=\fbox ア:\fbox イ$です。文字列 アイ を解答してください。
例:$R_1:R_2=5:2$ であれば 52 と解答

幾何問題11/22

miq_39 自動ジャッジ 難易度:
14月前

6

問題文

円 $\omega$ 上に相異なる $2$ 点 $A,B$ がある.ただし,弦 $AB$ は $\omega$ の直径ではない.$A,B$ における $\omega$ の接線をそれぞれ $l,m$ とする.劣弧 $AB$ 上(端点を除く)に点 $P$ をとり,$P$ を通り $l$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $C$ とし,$P$ を通り $m$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $D$ とする.$l$ と直線 $BC$ の交点を $E$,$m$ と線分 $AD$ の交点を $F$ とする.また,線分 $AF$ と線分 $BE$ の交点を $X$,線分 $CF$ と線分 $DE$ の交点を $Y$ とする.$AB=\sqrt{69}$,$AC=3$,$BD=6$ がそれぞれ成り立っているとき,線分 $XY$ の長さは,互いに素な正整数 $a,c$ および平方因子を持たない $2$ 以上の整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を求めよ.

解答形式

半角数字で解答してください.

11月前

6

問題文

下図で、 四角形ABCDは平行四辺形です。四角形ABCDの面積が50㎠、五角形GHIJKの面積が5㎠のとき、十角形DGEHFIBJCK(青い部分)の面積は何㎠ですか。ただし、図は正確とは限りません。

解答形式

半角数字で入力してください。
例)10

外心と内心

nmoon 自動ジャッジ 難易度:
9月前

6

問題文

$\angle{A} = 60^{\circ}$ なる三角形 $ABC$ の内心を $I$,外心を $O$ とする.直線 $IO$ と直線 $BC$ の交点を $D$ とし,直線 $AD$ と三角形 $ABC$ の外接円との交点を $E(\not = A)$ とすると,以下が成立した:

$$EI = 23 , IO = 18$$

このとき,線分 $AI$ の長さは,互いに素な正整数 $a,b$ を用いて$\displaystyle\frac{a}{b}$ と表されるので,$a + b$ を解答してください.

求面積問題21

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

3つの正五角形がそれぞれ1頂点ずつを共有して図のように配置されています。緑で示した三角形の面積が22のとき、赤い三角形の面積を求めてください。

解答形式

半角数字で回答してください。

求面積問題23

Kinmokusei 自動ジャッジ 難易度:
3年前

10

問題文

半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。

解答形式

半角数字で解答してください。

幾何問題24/1/8

miq_39 自動ジャッジ 難易度:
12月前

9

問題文

$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください。