KOTAKE杯004(B)

MrKOTAKE 自動ジャッジ 難易度: 数学 > 競技数学
2025年3月7日21:00 正解数: 17 / 解答数: 24 (正答率: 70.8%) ギブアップ不可
この問題はコンテスト「KOTAKE杯004」の問題です。

全 24 件

回答日時 問題 解答者 結果
2025年10月4日9:58 KOTAKE杯004(B) nmoon
正解
2025年10月4日9:48 KOTAKE杯004(B) nmoon
不正解
2025年3月12日6:15 KOTAKE杯004(B) shoko_math
正解
2025年3月10日12:38 KOTAKE杯004(B) katsuo_temple
正解
2025年3月7日22:08 KOTAKE杯004(B) miq_39
正解
2025年3月7日22:07 KOTAKE杯004(B) miq_39
不正解
2025年3月7日21:58 KOTAKE杯004(B) uran
正解
2025年3月7日21:54 KOTAKE杯004(B) miq_39
不正解
2025年3月7日21:54 KOTAKE杯004(B) miq_39
不正解
2025年3月7日21:53 KOTAKE杯004(B) Tehom
正解
2025年3月7日21:45 KOTAKE杯004(B) Mid_math28
正解
2025年3月7日21:45 KOTAKE杯004(B) Mid_math28
正解
2025年3月7日21:30 KOTAKE杯004(B) nepia_nepinepi
正解
2025年3月7日21:29 KOTAKE杯004(B) natsuneko
正解
2025年3月7日21:28 KOTAKE杯004(B) nepia_nepinepi
不正解
2025年3月7日21:27 KOTAKE杯004(B) nepia_nepinepi
不正解
2025年3月7日21:26 KOTAKE杯004(B) arararororo
正解
2025年3月7日21:23 KOTAKE杯004(B) arararororo
不正解
2025年3月7日21:22 KOTAKE杯004(B) offbeat
正解
2025年3月7日21:16 KOTAKE杯004(B) GaLLium31
正解
2025年3月7日21:13 KOTAKE杯004(B) wasab1
正解
2025年3月7日21:07 KOTAKE杯004(B) sta_kun
正解
2025年3月7日21:07 KOTAKE杯004(B) Nyarutann
正解
2025年3月7日21:07 KOTAKE杯004(B) pomodor_ap
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

KOTAKE杯004(C)

MrKOTAKE 自動ジャッジ 難易度:
7月前

26

問題文

$∠A$が鋭角であり$AB=AD,BC=CD=7,∠ABC=∠CDA=90°$を満たす四角形$ABCD$がある.線分$AB$,線分$AD$の中点をそれぞれ$M,N$とし,直線$MN$と直線$BC$の交点を$P$とすると$AP=24$であったので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯004(D)

MrKOTAKE 自動ジャッジ 難易度:
7月前

15

問題文

$AB<AC$の三角形$ABC$があり,内心を$I$,直線$AI$と三角形$ABC$の外接円の交点を$M(≠A)$とする.$∠A$内の傍接円と辺$BC$の共有点を$P$としたとき$4$点$BIPM$は共円であり,$BI=5,BC=11$であった.このとき$IP$の長さは正の整数$a,b$と平方因子を持たない正の整数$c$を用いて,$a−b \sqrt{c}$と表せるので$a+b+c$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯004(A)

MrKOTAKE 自動ジャッジ 難易度:
7月前

25

問題文

$AB<BC$なる鋭角三角形$ABC$があり,$B$から$AC$におろした垂線の足を$D$とし,線分$BC$の中点を$M$とする.三角形$ABC$の外接円上に点$E,F$をとると$4$点$EDMF$はこの順に同一直線上に存在し,$DE=6,MF=8,CD=15$であったので線分$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯005(D)

MrKOTAKE 自動ジャッジ 難易度:
4月前

16

問題文

$AB=5, AC=8, \angle A=60^{\circ}$ なる三角形 $ABC$ について,外接円の $A$ を通らない弧 $BC$ の中点を $M$ とする.相異なる $4$ 点 $P,Q,B,C$ がこの順で同一直線上に並び,$\angle APB:\angle MPB=\angle AQB:\angle MQB=3:1$ が成立した.線分 $PQ$ の長さは互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

KOTAKE杯005(C)

MrKOTAKE 自動ジャッジ 難易度:
4月前

23

問題文

鋭角三角形 $ABC$ があり, $B$ から $AC$ への垂線の足を $D$ とし,重心を $G$ ,垂心を $H$ とする.このとき $4$ 点 $B,C,G,H$ は共円であり$AD=3,CD=5$であったので, $AB$ の長さの $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE

KOTAKE杯005(B)

MrKOTAKE 自動ジャッジ 難易度:
4月前

23

問題文

三角形 $ABC$ があり, $ \angle ACB$ の二等分線と $AB$ の交点を $D$ とし,線分 $BC$ 上に点 $P$ ,線分 $AC$ 上に点 $Q$ をとると相異なる $4$ 点 $A,C,D,P$と$B,C,D,Q$ はそれぞれ共円であり $CP=3,CQ=4,AB=15$ が成立した.このとき三角形 $ABC$ の面積の $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE

KOTAKE杯005(A)

MrKOTAKE 自動ジャッジ 難易度:
4月前

33

問題文

三角形 $ABC$ の内部に点 $D$ をとると $DB=DC,AC=AD, \angle DBC=19^{\circ}, \angle ABD=30^{\circ} $ が成立したので $\angle BAC$ の大きさを度数法で解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

KOTAKE杯005(F)

MrKOTAKE 自動ジャッジ 難易度:
4月前

20

問題文

$AB<AC$ なる三角形 $ABC$ について,$AB=AD$ なる線分 $BC$ (端点を含まない) 上の点を $D$,円 $ABD$ と線分 $AC$ の交点を $E(\neq A)$,円 $BEC$ と線分 $AD$ の交点を $F$ とする.
直線 $BF$ と円 $FDC$ が再び交わる点を $P$ とすると,$AP\parallel BC$ かつ $PE=5, BC=12$ が成立したとき,$AB$ の長さの二乗は互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

KOTAKE杯001(R)

MrKOTAKE 自動ジャッジ 難易度:
14月前

24

問題文

外心を$O$とする三角形$ABC$があり線分$BC$上に点$D$をおくと以下が成立した.
$AD=CD,BD-CD=15,OB=24,OD=9$
このとき$AB$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(Q)

MrKOTAKE 自動ジャッジ 難易度:
14月前

23

問題文

$AB=15,AC=24$の鋭角三角形$ABC$があり内心を$I$,垂心を$H$とすると
$4$点$BCHI$は同じ円 $Γ$上にあった.このとき円 $Γ$の半径の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

bMC_C

bzuL 自動ジャッジ 難易度:
15月前

31

問題文

凸五角形 $ABCDE$ は以下を満たします.
$$
\begin{cases}
AB=BC=CD=DE \\\\
2\angle{BAE} = \angle{CBA}\\\\
2\angle{ECA} = \angle{AEC} = \angle{BAE} + 30^{\circ}
\end{cases}
$$
このとき,互いに素な正整数 $a,b$ を用いて $\angle{EDB}=\bigg(\dfrac{a}{b}\bigg)^{\circ}$と表すことができるので,$a+b$ を答えてください.

解答形式

半角数字で解答してください.

PGC005 (B)

pomodor_ap 自動ジャッジ 難易度:
10月前

35

問題文

$BC=123, \angle B=90^{\circ}$ なる三角形 $ABC$ について,内心を $I$,$\angle A$ 内の傍心を $J$ とすると,四角形 $ABIC$ は三角形 $BCJ$ よりも面積が $246$ 大きくなりました.$AB$ の長さを求めてください.