yes 自動ジャッジ 難易度: 数学
2025年3月17日11:19 正解数: 8 / 解答数: 11 (正答率: 72.7%) ギブアップ数: 0

問題文

$$
a_1 = 1,\quad a_2 = 2,\quad a_n = 5a_{n-1} - 6a_{n-2} \quad (n \geq 3)
$$

解答形式

$a_{10}$を求めなさい。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

幾何No.2

alpha 自動ジャッジ 難易度:
45日前

5

問題

$AB=AC$なる二等辺三角形$ABC$について, $A$から$BC$に下した垂線の足を$H$とし, 線分$AH$上に点$P$をとると,
$$
AP=5 PH=3 ∠PBC=∠PAC
$$
が成立した. このとき, 三角形$ABP$の面積の2乗を解答せよ.

100G

Ryomanic 自動ジャッジ 難易度:
24日前

7

問題文

$\angle{ADC}=\angle{BCD}=90^\circ,BAD>90^\circ$なる台形$ABCD$について,
$$\angle{BAC}=90^\circ,AB=4,AC=3$$
が成立した.$ABCD$の面積を求めよ.

解答形式

求める値は互いに素な正整数$p,q$を用いて$\frac{p}{q}$と表せるので,$p+q$を解答してください.

原始ピタゴラス数

sulippa 自動ジャッジ 難易度:
8月前

4

問題文

互いに素な整数の辺 $a,b,l$(斜辺 $l$)を持つ直角三角形を考える。内接円の半径を $r$、周長を $L$、面積を $S$ とする。
$L^2=kS$ ($k$ は正の整数) を満たすとき、
全てのkの値を求めよ。

解答形式

半角1スペースおきに小さい順に並べてください

二等辺三角形と最小値

smasher 自動ジャッジ 難易度:
3月前

4

問題文

$AB=BC$で、面積が$2025$であるような二等辺三角形$ABC$がある。$AB(=BC)$の最小値を求めよ。

解答形式

半角数字で$AB^2(=BC^2)$の値を入力してください。

関数方程式

Sry 自動ジャッジ 難易度:
4月前

7

問題

$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yについて恒等式$
$$f(x^2+y)=f(kx^2+2y)-f(3x^2)$$
$を満たすとき、定数kの値を求めよ。$

OMC没問2

Kta 自動ジャッジ 難易度:
10月前

4

問題文

$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で入力してください。

31日前

4

問題文

以下の $x$ に関する $3$ 次方程式は相異なる $3$ 個の複素数解をもつので,それぞれの解を $\alpha,\beta,\gamma$ とします.
$$x^3-2^{2025}x^2+24x-2^{2023}=0$$

このとき,以下の値は整数になるので,その正の約数の個数を求めてください.
$$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$

解答形式

整数で解答してください.

補足

https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの31番の問題と同じです.

31日前

4

問題文

以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします.
$$x^{100}+x^{99}+2025x+12=0$$

このとき,以下の値を求めてください.
$$\sum_{k=1}^{100} ({\alpha_k}^{100}+{\alpha_k}^{99})$$

解答形式

整数で解答してください.

補足

https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの14番の問題と同じです.

幾何No.3

alpha 自動ジャッジ 難易度:
44日前

6

問題

$AB=3$なる鋭角三角形$ABC$について, $AC$, $BC$の中点をそれぞれ$M$, $N$とすると, $AN=4$が成立した. また, 三角形$ANC$の外接円と直線$MN$との交点のうち, $N$でないほうを$D$とすると, $DC=9$が成立した. このとき, $AD$の長さの二乗は互いに素な正整数$a$, $b$を用いて$\frac{a}{b}$と表されるので$a+b$を解答せよ.

abc (大数宿題2024-2)

Lim_Rim_ 自動ジャッジ 難易度:
9月前

12

問題文

$\sqrt[abc]{a! + b! + c!}$が整数となるような正の整数の組$(a,b,c)$をすべて求めよ.

解答形式

すべての組に対する $a+b+c$ の値の総和を解答してください。論証は解説を参照してください。

yes 自動ジャッジ 難易度:
10月前

10

問題文

1から100までの整数の中から異なる3つの整数を選び、$a<b<c$ とします。これらの3つの整数が等差数列をなすような選び方は何通りありますか?

解答形式

半角英数字で解答してください。

Reverse digits (学コン2024-12-3)

Lim_Rim_ 自動ジャッジ 難易度:
9月前

6

問題文

10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.

備考

本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.