$$ a_1 = 1,\quad a_2 = 2,\quad a_n = 5a_{n-1} - 6a_{n-2} \quad (n \geq 3) $$
$a_{10}$を求めなさい。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ
真ならば真、偽ならば偽と入力
$\sqrt[abc]{a! + b! + c!}$が整数となるような正の整数の組$(a,b,c)$をすべて求めよ.
すべての組に対する $a+b+c$ の値の総和を解答してください。論証は解説を参照してください。
以下の2次方程式 $$ x^{2}-2ax+b=0 ― (*) $$ について,自然数$n$を用いて以下の手順で係数$a,b$を定める。 $a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 $b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。
$(1)$ $P(2)$の値を求めよ。
(2)~(4)は,自作場合の数・確率1-2につづく
2025/01/07追記 解説をアップデート,全員に対して公開に設定
分母分子の順に半角数字2つを空白区切りで回答 例)$\frac{1}{2}$と答えたいときは 2 1 と回答
2つの正方形が図のように配置されています。赤と青の面積の差が$11$のとき、紫と橙の面積の差を求めてください。
半角数字で解答してください。
$ f(x)= 2^{2^{x}x}-1 $ とする。このとき、 $ f(1)+f(2)+f(3)+・・・+f(2024)=A $ とすると、Aの一の位の数字は何になるか。
OMCB030-C(https://onlinemathcontest.com/contests/omcb030/tasks/4587) のもう一つの案です.
$2$ 以上の整数 $n$ に対し,$n$ が持つ相異なる素因数の総積を $\mathrm{rad}(n)$ で表します.例えば,$\mathrm{rad}(18)=2×3$ です.次の等式を満たす $2$ 以上の整数 $m$ の総和を求めてください.
$$m=\mathrm{rad}(m)+240$$
数直線上の点 $\mathrm P$ は初め原点にある.サイコロを振り $1, 2$ が出たら正の向きに $2$ 進み,$3, 4, 5, 6$ が出たら負の向きに $1$ 進むという操作を繰り返す. $6$ 回の操作をおこなったとき,点 $\mathrm P$ が常に $x\geqq0$ の範囲にある確率を求めよ. 答えは互いに素な自然数 $a,b$ を用いて $\displaystyle\frac ab$ と表されるので,$1$ 行目に $a$ を,$2$ 行目に $b$ を答えよ.
nを一桁の自然数とする。xについての多項式、
∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt
について、x^6の係数を自然数にするようなnを求めなさい。
半角で一桁の数字を入力してください。
$ a!=b^{2}+2となる自然数a,整数bについて、 $ $ k(a,b)=a+bとおく。 $ $ k(a,b) の値として考えられるものは何個あるか。 $
円$O_1,O_2,O_3$は点$O$を中心とする同心円で、この順に半径が小さい。円$O_1,O_2,O_3$の周上に、それぞれ点$A,B,C$をとるとき、$△ABC$の内部または周上に点$O$が含まれる確率を求めよ。
0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。
$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。
四角形ABCD、四角形GHCFはそれぞれ正方形で、1辺の長さはそれぞれ10cm、4cmです。また、DCとFC、BCとHCはぴったり重なっているとする。また、四角形IBKJは長方形で、IJは2cm、IBは4cmとし、ABとIB、BCとBKはぴったり重なっているとする。更に、AJとDGの延長とBCとの交点をEとし、Gを通りΔADEの面積を2等分する線とADとの交点をP、Jを通りΔADEの面積2等分する線と、ADとの交点をRとする。さらにPGの延長とBCとの交点をQ、RJとABとの交点をSとする。PGとRJの交点をOとする。四角形OJEQの面積を求めよ。
分数は/で表してください。 例)2分の9は 9/2 で表す。