$\sqrt[abc]{a! + b! + c!}$が整数となるような正の整数の組$(a,b,c)$をすべて求めよ.
すべての組に対する $a+b+c$ の値の総和を解答してください。論証は解説を参照してください。
$a\leq b\leq c$ としてよい. $n$を割り切る素数$p$に対して$v_p(a!+b!+c!) = v_p(c!)$を示せ. ここからどのような不等式が得られるか?
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$$ a_1 = 1,\quad a_2 = 2,\quad a_n = 5a_{n-1} - 6a_{n-2} \quad (n \geq 3) $$
$a_{10}$を求めなさい。
$(1)$ 方程式 $12x^2+4xy-21y^2=32x-32y+3$ の整数解 $(x,y)$ を求めよ. $(2)$ 不等式 $z^2\lt a(a+1)z-a^3$ の奇数解 $z$ が二つとなる実数 $a$ の範囲を求めよ.
$a^{xy}$ がとりうる整数の和を半角数字で入力してください.
互いに素な整数の辺 $a,b,l$(斜辺 $l$)を持つ直角三角形を考える。内接円の半径を $r$、周長を $L$、面積を $S$ とする。 $L^2=kS$ ($k$ は正の整数) を満たすとき、 全てのkの値を求めよ。
半角1スペースおきに小さい順に並べてください
$p$ を $p \ge 5$ なる素数とする。集合 $G_p = {1, 2, \dots, p-1}$ の部分集合 $S$ が自己双対的であるとは、 $$a \in S \implies a^{-1} \pmod p \in S \quad \text{かつ} \quad a \in S \implies p-a \in S$$ が全ての $a \in S$ に対して成り立つことと定義する(ここで $a^{-1}$ は $\pmod p$ における $a$ の乗法逆元)。
$N_p$ を、$G_p$ の自己双対的な部分集合 $S$ の総数とする(空集合 $\emptyset$ も含む)。
$N_p = 32$ となるような素数 $p$ ($p \ge 5$) をすべて求めよ。
解を半角1スペースおきに小さい順に並べてください
以下の式を満たす任意の正整数の組$(x,y)$について、$xy$としてありうる値の総和を求めて下さい。 $$ x^{y}=y^{x-y} $$
半角数字で解答して下さい。
1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ. (ただしpは素数とする)
(半角の自然数が答え)
整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。
$x \equiv p \pmod{9797}$ $x \equiv 11p + 69 \pmod{9991}$
この条件を満たす最小の素数 $p$ を求めよ。
半角左詰め
10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.
本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.
以下の2次方程式 $$ x^{2}-2ax+b=0 ― (*) $$ について,自然数$n$を用いて以下の手順で係数$a,b$を定める。 $a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 $b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。
$(1)$ $P(2)$の値を求めよ。
(2)~(4)は,自作場合の数・確率1-2につづく
2025/01/07追記 解説をアップデート,全員に対して公開に設定
分母分子の順に半角数字2つを空白区切りで回答 例)$\frac{1}{2}$と答えたいときは 2 1 と回答
$p=3, \quad q=5, \quad r=7$
$X = p^q + q^p$ $Y = q^r + r^q$ $Z = r^p + p^r$
$N = X^p + Y^q + Z^r$
このとき、$N$を$105$で割った余りを求めよ。
1から100までの整数の中から異なる3つの整数を選び、$a<b<c$ とします。これらの3つの整数が等差数列をなすような選び方は何通りありますか?
半角英数字で解答してください。
$P(x)$ は整数係数の monic な (最高次の係数が1の) 3次多項式 であるとする。方程式 $P(x) = 0$ は、相異なる3つの整数解を持 つことが分かっている。 $P(0)=6$ $P(1)=4$ のとき、$P(4)$の値を求めよ。
半角でスペースなし