整数問題

Ryomanic 自動ジャッジ 難易度: 数学 > 競技数学
2025年4月2日8:49 正解数: 5 / 解答数: 10 (正答率: 50%) ギブアップ数: 0

問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許さないとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。

解答形式

互いに素な正整数q,pを用いて
p/q と表せるため、p+qを解答してください。


ヒント1

0〜8の整数の総和は3の倍数である。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

整数問題

Ryomanic 自動ジャッジ 難易度:
4月前

8

問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許すとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。
(似た問題を投稿しています。解答する場所を間違えないように注意してください。)

解答形式

互いに素な正整数p,qを用いてp/qと表せるため
p+qを解答してください。

面積比

taku1729 自動ジャッジ 難易度:
3月前

5

問題文

△ABCについて、Aから直線BCに下ろした垂足をD、点Bから直線CAに下ろした垂足をE、△ABCの垂心をHとしたとき以下が成立しました。$$AH=3,AE=2,AC=5$$△AHB:△HCDは互いに素な自然数a,bを用いてa:bと表せるのでa+bの値を解答してください。

解答形式

半角数字を入力してください。

第2回琥珀杯 E

Kohaku 自動ジャッジ 難易度:
4月前

7

問題文

純循環小数(少数第一位から循環する循環小数)$x$を定義域とする関数$f(x)$を、$x$の循環部とする。ただし、循環部に0が現れ、それより大きい位に0以外の数がない場合、その0は無視するものとする。$f(\frac{5}{33})=15,f(\frac{4}{3333})=12$といった具合である。
正整数$n$に対して、$n<m<2025^{2025}$なる正整数$m$であって、$n$の値にかかわらず以下の等式を満たすものはいくつあるか。
$$f(\frac{n}{m})=(m−2)n$$
必要ならば、$$0.30102<\log_{10}2<0.30103, 0.47712<\log_{10}3<0.47713$$
を用いてよい。

第2回琥珀杯 D

Kohaku 自動ジャッジ 難易度:
4月前

7

交わらない$2$円$O_1,O_2$は直線$m$に同じ側で接しており、その反対側に交わらない$2$円$O_3,O_4$が直線$m$に接している。円$O_x(x=1,2,3,4)$の半径を$x$、直線$m$との接点を$P_x$とすると、点$P_1,P_4,P_2,P_3$がこの順に並んだ。$P_1P_4=P_2P_3=5,P_2P_4=3$のとき、四角形$O_1O_2O_3O_4$の面積を求めよ。

問題2

sulippa 自動ジャッジ 難易度:
43日前

4

問題文

整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。

$x \equiv p \pmod{9797}$
$x \equiv 11p + 69 \pmod{9991}$

この条件を満たす最小の素数 $p$ を求めよ。

解答形式

半角左詰め

Bar Chart

aa36 自動ジャッジ 難易度:
10日前

4

問題文

$1$ 以上 $8$ 以下の数が $8$ 個あります.$8\times 8$ の白いマス目に,$8$ 個の数を棒グラフとして黒で書き込むことにしました.このとき,このマスから $2\times 2$ の正方形を切り取りとる方法のうち,黒マスがちょうど $2$ マスである方法の数を最初の $8$ 個の数のスコアと呼ぶことにします.$8$ 個の数の選び方 $8^{8}$ 通り全てに対してのスコアの総和を答えてください.

解答形式

末尾に「(通り)」などをつけず,非負整数で答えてください.

第2回琥珀杯 C

Kohaku 自動ジャッジ 難易度:
4月前

15

$10^{n^n}$を$998$で割った余りが$512$となる最小の自然数$n$を求めよ。

B. 8分割

G414xy 自動ジャッジ 難易度:
10月前

19

問題文

4x4のマス目を1x2のタイル8枚で敷き詰める方法は何通りありますか?

解答形式

半角数字で入力してください。

WMC(E)

Weskdohn 自動ジャッジ 難易度:
4月前

26

問題文

SKG学院では,5×5のマス目を使い,とあるゲームが行われている.
ゲームのルールは以下である.
・お客さんと生徒がじゃんけんをする.勝った方が先手,負けた方が後手となる.
この時,あいこは考えないものとする.
・先手は黒の碁石,後手は白の碁石を,マスの上に交互に置いていく.
・同じマスには碁石は一つまでしか置けない.
・マス目が全て埋まった時,各行について次の条件を満たすものを特別な行と呼び,その個数を数える.
特別な辺:ある行の5マスを見た時,お客さんが置いた碁石の個数が偶数個であるもの.
・特別な行の個数が偶数であればお客さんの勝ち,奇数であれば生徒の勝ちとなる.

お客さんが勝つ確率をA,お客さんが勝つ時の碁石の置き方の総数をBとする.
A×Bの値を求めなさい.
但し,回転して重なるような碁石の置き方は区別しないとする.

解答形式

半角数字で入力して下さい.

A. 14分割

G414xy 自動ジャッジ 難易度:
10月前

10

問題文

4x4のマス目を境界線で区切り、14分割する方法は何通りありますか?

解答形式

半角数字で入力してください。

8月前

12

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(1)$ $P(2)$の値を求めよ。

(2)~(4)は,自作場合の数・確率1-2につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答

第2回琥珀杯 A

Kohaku 自動ジャッジ 難易度:
4月前

5

問題文

円$C_1:x^2+(y−\sqrt{6})^2=2$及び円$C_1$と$x$軸について対称な円$C_2$をとる。さらに、2点$(0,\sqrt{6}−\sqrt{2}),(0,−\sqrt{6}+\sqrt{2})$を通り$x$軸に垂直で、原点を中心とする円$C_3$をとり、円$C_2$の中心を通り$xy$平面に垂直な直線を$l$とする。円$C_3$を直線$l$周りに$360°$回転させてできる立体の体積を求めよ。

解答形式

正整数$a,c,e$と平方因子をもたない正整数$b,d$を用いて$(a\sqrt{b}−c\sqrt{d})π^e$と表せるので、$a+b+c+d+e$を解答してください。