P2

Germanium32 自動ジャッジ 難易度: 数学 > 競技数学
2026年2月11日13:00 正解数: 15 / 解答数: 22 (正答率: 68.2%) ギブアップ数: 0
この問題はコンテスト「Japan Misreading Olympiad」の問題です。

全 22 件

回答日時 問題 解答者 結果
2026年2月11日22:12 P2 epsug
正解
2026年2月11日22:11 P2 epsug
不正解
2026年2月11日22:10 P2 epsug
不正解
2026年2月11日20:59 P2 yu23578
正解
2026年2月11日19:56 P2 Nyarutann
正解
2026年2月11日18:28 P2 G414xy
不正解
2026年2月11日18:25 P2 G414xy
不正解
2026年2月11日18:10 P2 ゲスト
正解
2026年2月11日15:21 P2 arararororo
正解
2026年2月11日15:21 P2 arararororo
不正解
2026年2月11日15:19 P2 fountain
正解
2026年2月11日14:53 P2 aa36
正解
2026年2月11日14:52 P2 aa36
不正解
2026年2月11日14:45 P2 hayabusa286
正解
2026年2月11日14:13 P2 tomorunn
正解
2026年2月11日13:49 P2 _caz37_
正解
2026年2月11日13:10 P2 rakki
正解
2026年2月11日13:10 P2 udonoisi
正解
2026年2月11日13:09 P2 udonoisi
正解
2026年2月11日13:08 P2 poinsettia
正解
2026年2月11日13:07 P2 poinsettia
不正解
2026年2月11日13:06 P2 atawaru
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

D

nmoon 自動ジャッジ 難易度:
4月前

37

問題文

$0$ 以上 $1$ 以下の実数 $a_{1} , a_{2} , a_{3}$ について,以下の値の最大値を求めてください.

$$a_{1} + 2a_{2} +3a_{3} +4\sqrt{a_{1}(1-a_{1}) + a_{2}(1-a_{2}) + a_{3}(1-a_{3})}$$

解答形式

求める値を $M$ としたとき,$10000M$ の整数部分を解答してください.

A

nmoon 自動ジャッジ 難易度:
4月前

40

問題文

正三角形 $ABC$ の内部に点 $P$ をとったところ,以下が成立しました.

$$AP = 10 , BP = 14 , CP = 16$$

このとき,正三角形 $ABC$ の面積を求めて下さい.

解答形式

求める値を $2$ 乗した値は正整数となるので,その値を求めて下さい.

E

nmoon 自動ジャッジ 難易度:
4月前

23

問題文

横一列に並んだ $14$ 個のオセロの石があります.そして,以下の操作を何度か行い,黒面を向いた石の個数をできるだけ少なくします.

  • 連続して並んだ $4$ 個の石を選んで,左から $1,2,4$ 個目の石を全て裏返す.

全ての操作の終了後に黒面を向く石の個数を スコア とします.最初の石の配色は $2^{14}$ 通りありますが,これら全ての場合においてスコアの総和を求めてください.
 但し,オセロの石は,片方が黒面で,もう片方が白面であるとする.

解答形式

正整数で答えてください.

WMC(C)

65 採点者ジャッジ 難易度:
9月前

14

問題文

SKG学院の学園祭では下のような$5$マス$\times5$マスの盤を用いて次のようなゲームを行う.

・お客さんは12個の碁石を全てマスの上に置く.
・一マスには一つまでしか碁石は置けない.
・この時スコアを次のように定める.
スコア:各行各列について,碁石が偶数個置かれているものの個数.

スコアが10となるような碁石の置き方の一例を答えよ.

解答形式

置かないマスは0,置くマスは1で表す.
例えば一番右上と一番左上にのみ碁石を置く.この置き方は下のように書くものとする.

10001
00000
00000
00000
00000

またこの時スコアは8である.

TMC001(B)

hya_math 自動ジャッジ 難易度:
4月前

15

関数$A(n),B(n)$を
$$
A(n)=(1\le x \le nを満たす1001と互いに素な整数xの個数)\\
B(n)=(n\le x \le 1001を満たす1001と互いに素な整数xの個数)
$$
と定めるとき,次の値を求めてください.
$$
\sum_{n=1}^{1000}\quad \frac{A(n)^2}{A(n)-B(n)}
$$

U

mani 自動ジャッジ 難易度:
39日前

21

$3$ 点 $A,B,C$ はこの順で一直線に並んでおり,$AC,AB,BC$ を直径とする円をそれぞれ $\omega_1,\omega_2,\omega_3$ とし,点 $B$ を通る直線と $\omega_1,\omega_2,\omega_3$ の交点を,$P,Q,B,R,S$ の順に並ぶように定めると,
$$AB<BC,\quad AB=\sqrt{390},\quad QB=18,\quad BR=24$$
が成り立ちました.このとき,互いに素な正整数 $m,n$ を用いて $PB:BS=m:n$ と表されるので,$m+n$ の値を解答してください.

問題11

Mid_math28 自動ジャッジ 難易度:
4月前

83

問題文

$a,b$ を $a \le b$ を満たす正の整数とします。
$2025\times 2026$ のマス目があります。ここに $a\times b$ のタイルを何枚か置くことでマス目を隙間なく敷き詰めることが出来ました。
このような $(a,b)$ の組はいくつありますか?

追記 タイルは回転してかまいません。

解答形式

半角数字で解答してください

PDC009 (E)

poinsettia 自動ジャッジ 難易度:
4月前

27

問題文

$14\times 14$ のマス目に以下のように整数を書き込む.ただし,左から $m$, 上から $n$ 番目のマスを $(m,n)$ で表すものとする.

  • $(1,1)$ に $1$ を,$(1,2)$ と $(2,1)$ に $2$ を書き込む.
  • $k\geq 3$ について,すべてのマスに整数が書き込まれるまで以下を繰り返す: $k-2$ が書き込まれているいずれかのマスと,辺を共有せず頂点のみを共有しているマスであり,まだ整数が書き込まれていないようなものすべてに $k$ を書き込む.

いま,PDC 君は $(m,n)$ にいるとき $(m+1,n), (m,n+1)$ に瞬間移動することができ,またそれ以外の移動をすることができない.あるマスからあるマスへの経路について,全ての訪問したマス(出発地点と到着地点を含む)に書き込まれた数字の総和をスコアとする.
$(1,1)$ から $(14,14)$ まで移動するとき,スコアが最小となるような移動方法はいくつあるか?

PDC009 (C)

poinsettia 自動ジャッジ 難易度:
4月前

29

問題文

正の整数 $n$ について,$f(n)$ で $n$ の正の約数であり,$n$ の最小の素因数を素因数に持たないようなもののうち最大のものを表す.例えば,$f(2\times 3^2)=3^2, f(2\times 3\times 5)=3\times 5$ である.ただし,$f(1)=1$ と扱う.
また,$g(n)$ で $n$ の正の約数 $d$ すべてについて $f(d)$ の総和を表す.
このとき,
$$g(2\times 3\times 7\times 11\times 13\times 17)-g(5\times 7\times 11\times 13\times 17)$$ を求めよ.

WMC(J)

65 採点者ジャッジ 難易度:
9月前

13

問題文

聖くんと光くんはトランプゲームを行うことにした.

なお$1$ から $13$ までの数字が書かれたトランプをそれぞれ四枚ずつ用いる.

ルールは以下の通り.
- 聖くんはトランプを $1$ 枚から$3$ 枚まで引くことができる.
- 光くんは幾つかの質問をして,聖くんが引いたトランプに書かれた数字を回答する.

光くん「書かれた数字の和を教えて」
聖くん「$31$ だよ」
光くん「うーん難しいな……なにかヒントくれない?」
聖くん「トランプに書かれた数字の積を求めたら、各位の和は $2$ になったよ」

光くんが引いたトランプの目として考えられるものを全て求めなさい。

解答形式

答えが$1,2,4$の場合は$(1,2,4)$と入力して下さい.(小さい順に)

WMC(D)

65 自動ジャッジ 難易度:
9月前

10

問題文

SKG学院の文化祭では,$1$から$10$の目が一つずつ書かれた十面体の歪んだダイスを配布しています.

このダイス$10$個に$1$から$10$までの番号をつけることにしました.

ここで以下のような事実が分かっています.
また$1≦n≦10$を満たす任意の整数$n$について,番号$s$がついたダイスを一回振って$n$の目が出る確率を$a_{n^s}$と書くことにします.

・$a_{1^s}:a_{2^s}…a_{9^s}:a_{10^s}=1^s:2^s\cdots9^s:10^s$を満たす.

この$10$個のダイスを同時に一回振る時,出目の積の期待値を求めて下さい.

解答形式

半角数字で入力して下さい.

C

nmoon 自動ジャッジ 難易度:
4月前

40

問題文

nmoon君は黒板に $60$ の正の約数を一つずつ全て書き込みます.そして,以下の操作をできなくなるまで行います.

  • 黒板に書かれた $2$ つの正の整数 $x,y$ について,黒板から $x,y$ を消し,$x,y$ の最大公約数と最小公倍数を黒板に書き込む.但し,このとき,操作前と操作後での黒板に書かれた数が,重複を許して全て一致することはないようにする.

全ての操作が終了したとき,黒板に書かれた数の総和としてあり得る値の総和を求めてください.

解答形式

正整数で答えてください.